

Special Report 79-7

April 1979

SENERGY REQUIREMENTS FOR SMALL FLOW WASTEWATER TREATMENT SYSTEMS

E.J. Middlebrooks and C.H. Middlebrooks

DIE FILE COPY,

DDC
PERTURE
JUN 29 1979
PERSOLUTE
B

Prepared for DIRECTORATE OF MILITARY PROGRAMS OFFICE, CHIEF OF ENGINEERS

UNITED STATES ARMY
CORPS OF ENGINEERS
COLD REGIONS RESEARCH AND ENGINEERING LABORATORY
HANOVER, NEW HAMPSHIRE, U.S.A.

Approved for public release, distribution unlimited

Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered, **READ INSTRUCTIONS** REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM I. REPORT NUMBER Special Report 79-7 TITLE (and Subtitle) ENERGY REQUIREMENTS FOR SMALL FLOW WASTEWATER TREATMENT SYSTEMS. 6. PERFORMING ORG. REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(#) AUTHOR(e) Purchase Order No. 2 E. Joe Middlebrooks DACA 89-77-1915 Charlotte H./Middlebrooks PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK DA Projes 4A762728A896 Middlebrooks and Associates, Inc. Task 02, Work Unit 004 1737 East 1400 North, Logan, Utah 84321 11. CONTROLLING OFFICE NAME AND ADDRESS April Directorate of Military Programs NUMBER OF PAGES Office, Chief of Engineers Washington, D.C. 20314 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report) U.S. Army Cold Regions Research Unclassified and Engineering Laboratory DECLASSIFICATION/DOWNGRADING Hanover, N.H. 03755 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited DACA89-77-C-1915 17. DISTRIBUTION STATEMENT (of the abetract ente 18. SUPPLEMENTARY NOTES 15. KEY WORDS (Continue on reverse side if necessary and identify by block number) Energy requirements Land application Unit operations Unit processes 110 998 Wastewater treatment me on reverse stds if messenary and identity by block This report summarizes energy requirements for small wastewater treatment systems (0.05 - 5 million gallons per day) applicable to military installations It compares various treatment combinations, and presents the energy requirement for the most viable alternatives in tabular form. It also presents energy requirements for various components of wastewater treatment systems in a format making it convenient to calculate the energy requirements for many combinations of the components. In addition, it summarizes briefly energy

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

ANTONIO SENT LED ASSET TO

20. Abstract continued

destimates made by others. The report compares typical combinations of unit operations and processes used to produce various quality effluents on the basis of energy consumption. It concludes that land application systems are the most energy-efficient wastewater treatment systems and that they are capable of producing an equivalent or higher quality effluent than any other treatment system.

Township and control was a second of the sec

138 As Joseph to the and the control of the control

IN OF White the Lording of

Edster requirements

11

This ergory supportings the transfer and the supply safety the incomment

systems (1.05 - 3 million gailons per day) applicable to military inspellation of compares anylons are standard tong, and presents the choicy resultance for the soot whale alternatives in teleplant form. It like presents any acting requirements for various components of westernative are supplied to converted to collective the energy requirements in the same components. The addition, it suggests a startly mades?

2 1 4 Cm

PREFACE

This report was prepared by E. Joe Middlebrooks and Charlotte H. Middlebrooks, both of Middlebrooks and Associates, Logan Utah.

The study was performed for the U.S. Army Cold Regions Research and Engineering Laboratory (USA CRREL) and was funded under DA Project 4A762720A896, Environmental Quality for Construction and Operation of Military Facilities; Task 02, Pollution Abatement Systems; Work Unit 604, Wastewater Treatment Techniques in Cold Regions.

The final scope of study was defined by Sherwood C. Reed of CRREL. He served as technical monitor during the course of the study and his efforts in this regard contributed significantly to the successful completion of this report.

Technical review of this report was performed by Sherwood C. Reed, Robert S. Sletten, C. James Martel, and Edward F. Lobacz of CRREL.

Permission to reproduce drawings, tables, promotional and instructional materials by the following firms is greatly appreciated.

Journal Water Pollution Control Federation, Washington, D.C. Public Works Journal Corporation, Ridgewood, New Jersey Ann Arbor Science Publishers, Inc., Ann Arbor, Michigan Water and Sewage Works, Scranton Gillette Communications, Inc., Chicago, Illinois

The assistance of Ms. Barbara South in the preparation of this manuscript is greatly appreciated. Ms. Mona McDonald's editorial review was also most helpful.

The contents of this report are not to be used for advertising or promotional purposes. Citation of brand names does not constitute an official endorsement or approval of the use of such commercial products.

Acces	sion For	2 3FF / STEEL
NTIS	GRA&I	V
DDC T	AB	П
Unann	ounced	П
Justi	fication	
	ibution/	
	Availa	
Dist.	specia	al
1		
H		
,,		

TABLE OF CONTENTS

																Page
INTRODUCTION																1
General						•						•	•	•	•	1
Other Studies .	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	1
METHODS AND PROCEDURES			•	•		•			•	•		•	•	•		9
Equation Developme	ent												d•1			9
Design Parameters																9
Wastewater Charac			ics													9
Energy Recovery																10
Secondary Energy											•		•			10
RESULTS AND DISCUSSION			•			•			•				•	•	٠	11
Energy Equations					10											11
Treatment Systems																11
Energy Consumption																11
Carbon and Ion Ex		nge	Re	gen	era	tion	1									37
Gas Utilization																37
Effluent Quality	and	En	erg	y R	equ:	ire	nen	ts								37
Conventional Vers	us	Lan	d T	rea	tme	nt		•				•	•	•	•	39
CONCLUSIONS									•			•				45
APPENDIX A: EQUATIONS	DE	SCR	IBI	NG	ENE	RGY	RE	QUI	REM	ENT	S					47
APPENDIX B: RAW WASTE	WAT	ER	CHA	RAC	TER	IST	ICS							•		77
APPENDIX C: SLUDGE CH	ARA	CTE	RIS	TIC	S						•					79
LITERATURE CITED																81

LIST OF FIGURES

Figure		Page
1	Energy requirements for 30 mgd secondary treatment plants (Wesner and Burris, 1978)	. 3
2	Trickling filter treatment with anaerobic digestion (BOD ₅ = 5-day, 20°C biochemical oxygen demand; SS = suspended solids)	12
3	Rotating biological contactor treatment with anaerobic digestion	. 13
4	Activated sludge treatment with anaerobic digestion	. 14
5	Activated sludge treatment with sludge incineration	. 15
6	Physical-chemical advanced secondary treatment	. 16
7	Extended aeration with intermittent sand filter	. 17
8	Slow rate irrigation	
9	Rapid infiltration	. 19
10	Overland flow	. 20
11	Facultative lagoon-intermittent sand filter treatment	. 21
	exprended and the original arms and others adding out the control	
12	Advanced wastewater treatment	. 22
13	Comparison of energy requirements for trickling filter effluent treated for nitrogen removal and filtered versus facultative pond effluent followed by overland	
	flow treatment	. 40
14	Comparison of energy requirements for activated sludge, nitrification, filtration and disinfection versus facultative pond effluent followed by rapid infiltration and primary treatment followed by rapid	
	infiltration	. 41
15	Comparison of energy requirements for secondary treatment followed by advanced treatment versus facultative pond effluent followed by slow rate land	
	facultative pond efficient followed by slow face land	43

LIST OF TABLES

Table		Page
1	Energy requirements, 7.5 mgd, Lake Tahoe Wastewater Treatment system (Culp and Culp, 1971; Culp, 1978)	. 2
2	Examples of systems to be considered in evaluating	
	energy implications of wastewater reuse (Hagan and Roberts, 1976)	. 5
3	Estimated energy (electricity and fuel) for alternative treatment processes (Benjes, 1978)	. 6
4	Estimated total annual and unit costs for alternative treatment processes with a design flow of 1.0 mgd	
	(Tchobanoglous, 1974)	. 7
5	Energy comparison of sludge dewatering equipment	. 8
13	(Jacobs, 1977)	
6	Energy comparison of biological treatment systems (Jacobs, 1977)	. 8
7	Guidance for assessing level of preapplication for land treatment (EPA, 1978)	. 23
	Manufactar 11cm	
8	Energy requirements for components of trickling filter system with anaerobic digestion in the intermountain	
16	area of the USA	. 24
9	Energy requirements for components of a rotating biological contactor treatment system with anaerobic digestion located in the intermountain area of the	
	USA	. 25
10	Energy requirements for components of activated sludge system with anaerobic digestion in the intermountain	
	area of the USA	. 26
11	Energy requirements for components of activated sludge system with sludge incineration in the intermountain	
	area of the USA	. 27
12	Energy requirements for components of a physical- chemical advanced secondary wastewater treatment system located in the intermountain area of the	
23	system located in the intermountain area of the	28

CONVERSION FACTORS: U.S. CUSTOMARY TO

METRIC (SI) UNITS OF MEASUREMENT

These conversion factors include all the significant digits given in the conversion tables in the ASTM Metric Practice Guide (E 380), which has been approved for use by the Department of Defense. Converted values should be rounded to have the same precision as the original (see E 380).

Multiply	By the American back	To Obtain
inch	25.4*	millimeter
inch	2.54	centimeter
foot	0.3048*	meter
yard ²	0.8361274	meter ²
foot3	0.02831685	meter ³
yard ³	0.764549	meter ³
gallon	0.003785412	meter ³
pound	453.6	gram
pound/inch2	6894.757	pascal
pound/foot ³	16.01846	kilogram/meter ³
kilowatt-hour	3.600 x 106	joule
horsepower-hour	2.6845 x 106	joule
watt	1.000	joule/second
watt	0.0013410	horsepower
Btu	1054.85	joule
BTu	0.000293	kilowatt-hour
standard feet ³ of air/minute	0.47195	standard meter ³ of air/minute
helpforum	to the to State courses well agreem	

^{*}Exact

and and the even Highermannian and at mother process

aprove bes & issisted for egreen Junea, land (reserve and reserve)

LIST OF TABLES (CONTINUED)

Table		Page
13	Energy requirements for components of an extended aeration system with slow sand filter located in the intermountain area of the USA	29
14	Energy requirements for components of slow rate (irrigation) land treatment system located in the intermountain area of the USA	30
15	Energy requirements for components of a primary wastewater treatment plant followed by rapid infiltration land treatment systems located in the intermountain area of the USA	31
16	Energy requirements for components of rapid infil- tration land treatment systems located in the intermountain of the USA	32
17	Energy requirements for components of overland flow land treatment systems located in the intermountain area of the USA	33
18	Energy requirements for components of a facultative lagoon-intermittent sand filter system located in the intermountain area of the USA	34
19	Energy requirements for components of an advanced wastewater treatment system processing secondary effluent located in the intermountain area of the USA	35
20	Energy requirements for components frequently appended to secondary wastewater treatment plants	36
21	Expected effluent quality and total energy requirements for various sizes and types of wastewater treatment plants located in the intermountain area of the USA	38
22	Total annual energy for typical I mgd system (electrical plus fuel, expressed as 1000 kwh/yr)	42

SUMMARY

With increasing energy costs, energy consumption is assuming a greater proportion of the annual cost of operating wastewater treatment facilities of all sizes, and because of this trend, it is likely that energy costs will become the predominant factor in the selection of cost-effective small-flow wastewater treatment systems.

Where suitable land and groundwater conditions exist, a facultative pond followed by rapid infiltration is the most energy-efficient system described in this report. Where surface discharge is necessary and impermeable soils exist, a facultative pond followed by overland flow is the second most energy-efficient system described. Facultative ponds, followed by slow or intermittent sand filters, are the third most energy-efficient systems discussed, and are not limited by local soil or groundwater conditions.

INTRODUCTION

General

The concern for energy use at wastewater treatment facilities has developed well after many of the plans were made for the management of water pollution in the United States. This is true in military as well as in civilian installations. With changing standards and technology, information on energy requirements for small (0.05 to 5 mgd) wastewater treatment systems is needed to avoid future errors and to provide information to assist in designing and planning. Several estimates have been made for large systems, usually in the range of 5 to 100 mgd, but because hundreds of small systems are being used by military installations, it is imperative that information be gathered on energy requirements for wastewater treatment for small systems.

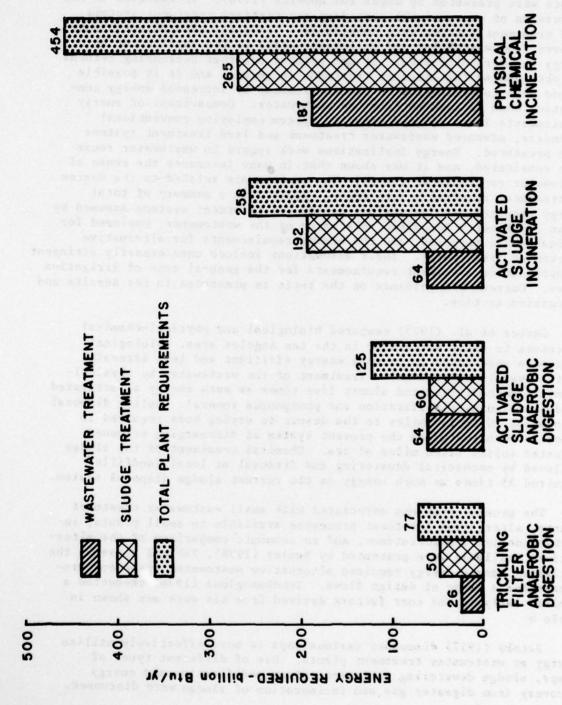
This report summarizes the energy requirements for all viable alternatives presently available to military installations for the treatment of small flow rates (0.05 - 5 mgd) of wastewater. It compares various treatment combinations, and presents in tabular form the energy requirements for the most viable alternatives. The data can be combined to produce an estimate of the energy requirements for all currently available unit operations and processes.

Other Studies

Only one comprehensive study of the energy requirements associated with wastewater treatment has been performed. Wesner et al. (1978) presented a detailed analysis of energy requirements by unit operations and unit processes employed in wastewater treatment. The results of this study were presented in graphical form with accompanying tables outlining the design considerations employed in developing the graphs. Energy requirements were presented in terms of the design flow rate of the treatment system in most cases, but when a wide choice of loading rates was applicable, the graphs were presented in terms of surface area or the flow rate applied to the component of the system. Portions of the Wesner et al. (1978) results are presented in detail in Appendix A in this report

Culp (1978) has presented an analysis of alternatives for future wastewater treatment at South Tahoe, California. This illustrates the increasing sensitivity of energy costs. When the original advanced wastewater treatment system was constructed in the late 1960's, energy was not costly and was not usually a significant factor in concept selection and design. Table 1 illustrates the energy required for alternatives compared with the original design. It is anticipated that the final product

Table 1. Energy requirements 7.5 mgd, Lake Tahoe Wastewater Treatment system (Culp and Culp, 1971; Culp, 1978).


Alternative	Total energy ^a (electricity and fuel expressed as equivalent 1000 kwh/yr)
Original system complete secondary treatment, AWT system, effluent export to Indian Creek Reservoir	64,500
1978 Alternatives Continue secondary, nitrification, effluent export to Indian Creek Reservoir	39,400
Continue secondary, nitrogen removal (ion exchange) effluent export to I.C.R.	40,244
Continue secondary on site, flood irri- gation land treatment in Carson River Basin	25,000

Does not include secondary energy requirements for chemical manufacture.

from the flood irrigation land treatment alternative will be at least equal in quality to the original design effluent.

Energy requirements for four wastewater treatment systems, including sludge processing, that are capable of achieving secondary effluent quality and complete sludge treatment and disposal were presented by Wesner and Burris (1978). Estimated energy requirements were presented for 1) trickling filter with anaerobic digestion, 2) activated sludge with anaerobic digestion, 3) activated sludge with sludge incineration, and 4) independent physical-chemical treatment with sludge incineration using 5 and 30 mgd capacities. A comparison of energy requirements for the four systems treating 30 mgd is shown in Figure 1. The potential for solar energy as a method of heating the digester and control building was discussed. Heat recovery from sewage effluents using heat pumps to heat digesters and buildings was considered.

Zarnett (1976, 1977, and undated) has examined the energy requirements for water and wastewater treatment plants and has presented the requirements by unit operations employed. The results were presented by unit operation to make it convenient to assess any treatment system on the basis of total energy consumption. By combining various flow configurations, a system capable of producing a given effluent quality can be assembled and the energy requirements compared. Zarnett cautions

Energy requirements for 30 mgd secondary treatment plants (Wesner and Burris, 1978). Courtesy of Journal Water Pollution Control Federation, Washington, D.C. Figure 1.

that the data were presented for comparative purposes and should not be used as absolute values.

Energy requirements for various types of wastewater treatment plants were presented by Hagan and Roberts (1976). In addition to the discussion of conventional secondary and tertiary treatment systems, land treatment systems were considered. Tradeoffs between pollutants removed from wastewater and pollutants added to the environment by energy use were discussed. It was pointed out that decreasing returns are obtained as the level of treatment increases, and it is possible to add more contamination to the environment by increased energy consumption than is removed from the wastewater. Comparisons of energy requirements for a 100 mgd capacity system employing conventional secondary, advanced wastewater treatment and land treatment systems were presented. Energy implications with regard to wastewater reuse were considered, and it was shown that in many instances the reuse of wastewater can conserve energy. The savings are related to the degree of treatment required before reuse. Table 2 is a summary of total energy requirements for various wastewater treatment systems assumed by Hagan and Roberts for direct discharge of the wastewater, employed for various reuse purposes, and the energy requirements for alternative sources of fresh water. Their assumptions include unnecessarily stringent preapplication treatment requirements for the general case of irrigation reuse. Current EPA guidance on the topic is presented in the Results and Discussion section.

Garber et al. (1975) compared biological and physical-chemical processes to treat wastewater in the Los Angeles area. Biological processes were found to be more energy efficient and less stressful on the overall environment. Treatment of the wastewater by physical-chemical methods required almost five times as much energy as activated sludge including nitrification and phosphorus removal. Solids disposal by pumping 90 to 100 miles to the desert to drying beds required 16 times as much energy as the present system of discharging screened digested solids seven miles at sea. Chemical treatment of the sludge followed by mechanical dewatering and disposal at local landfills required 35 times as much energy as the current sludge disposal system.

The general problems associated with small wastewater treatment plants, alternative treatment processes available to small plants, important design considerations, and an economic comparison of the alternatives available were presented by Benjes (1978). Table 3 presents the estimated annual energy required alternative wastewater treatment processes for a range of design flows. Tchobanoglous (1974) conducted a similar analysis and cost factors derived from his work are shown in Table 4.

Jacobs (1977) discussed various ways to more effectively utilize energy at wastewater treatment plants. Use of different types of pumps, sludge dewatering equipment, plant modification and energy recovery from digester gas and incineration of sludge were discussed.

Table 2. Examples of systems to be considered in evaluating energy implications of wastewater reuse (Hagan and Roberts, 1976).

9.3	Thank CROID Valued Thank Croides Insity This case to	Total Energy Required for 100 mgd kwh/day
Treatme	nt assumed for discharge	
1.	Activated sludge (with chlorination, sludge	
	digestion and landfill disposal)	93,000
2.	Biological-chemical (activated sludge with alum	
	treatment, nitrification/denitrification, sludge	
	digestion and landfill disposal)	235,000
3.	Tertiary (activated sludge, coagulation/filtration,	
	carbon adsorption, zeolite ion-exchange,	
	recalcination)	1,137,000
Type of	reuse	
1.	Local irrigation (assume 100-ft head for	
	conveyance)	57,000
2.	Distant irrigation (assume 1,500-ft head for	
	conveyance)	615,000
	Industrial (assume 100-ft head)	57,000
4.	Unrestricted (assume 500-ft head)	216,000
Treatme	nt assumed prior to reuse	
	irrigation reuse:	
	activated sludge	93,000
	biological-chemical	235,000
For	industrial reuse:	
	biological-chemical	235,000
	biological-chemical & desalting	695,000
	tertiary	1,137,000
	tertiary & desalting	1,597,000
For	unrestricted reuse:	Part of the Part of
	tertiary	1,137,000
	tertiary & desalting	1,597,000
Alterna	tive sources of fresh water	
1.	Local supplies	57,000
2.	Imported	938,000
3.	Desalted seawater	6,661,000

^aCourtesy of Water and Sewage Works, Chicago, Illinois.

Table 3. Estimated energy (electricity and fuel) for alternative treatment processes (Benjes, 1978).

Process ^a		Energy (1000 kwh/yr) Plant capacity (mgd)					
Frocess	0.1	0.5	1.0	2.0			
Prefabricated extended aeration	139	ndo-it i	a) he l cuss	100			
Prefabricated contact stabilization	95	447	886	a 1			
Custom design, extended aeration	197	857	1,901	-			
Oxidation ditch	134	647	1,288	2,571			
Activated sludge, anaerobic digestion Activated sludge, nitrification,	119	387	764	1,525			
anaerobic digestion	251	650	922	2,576			
Trickling filter, anaerobic digestion	31	126	246	485			
RBC, anaerobic digestion	65	276	566	1,105			
RBC, nitrification, anaerobic digestion	113	496	1,026	2,005			

^aAll with aerated grit chamber, chlorination and sludge drying beds.

A comparison of energy requirements and costs for sludge dewatering equipment is shown in Table 5. Energy requirements and costs for biological treatment systems are presented in Table 6.

Mills and Tchobanoglous (1974) presented detailed methods for calculating the energy consumption by the unit operations and processes used in wastewater treatment. Use of the equations and graphs presented in the paper is illustrated by examples using two alternative flow schemes. Detailed results are presented in tabular form and are easily compared between processes and systems.

Smith (1973) estimated the electrical power consumption by most conventional and advanced processes used to treat municipal wastewater on a unit processes basis. Electrical power consumption for complete plants was estimated by adding the power consumption for the individual processes. A comparison of electrical power consumption by wastewater treatment systems was made with other uses.

Estimates of recoverable energy in digester gases were made by Wesner and Clarke (1978). A discussion of the variation in gas production with the type sludge was presented.

Table 4. Estimated total annual and unit costs for alternative treatment processes with a design flow of 1.0 mgd (Tchobanoglous, 1974).

Process	Initial capital cost	Annual	Unit cost cents/			
00.00123 01.5543	dollars	Capital	M & 0	Total	galb	
Imhoff tank	380,000	41,720	15,550	57,270	15.7	
Rotating biological disks	800,000	87,832	57,680	145,512	39.9	
Trickling filter processes Activated sludge processes	900,000	98,811	58,480	157,291	43.1	
With external digestion	1,000,000	109,790	74,410	184,200	50.5	
With internal digestion	500,000	54,895	48,800	103,695	28.4	
Stabilization pond processes	250,000	27,447	23,680	51,127	14.0	
Land treatment processes						
Slow rate						
Basic system	340,000	37,328	41,540	28,859	21.6	
With primary treatment	940,000	103,302	81,540	184,742	50.6	
With activated sludge	1,240,000	136,139	115,950	252,089	69.1	
With stabilization pond	590,000	64,775	65,220	129,996	35.6	
Rapid infiltration		lote de te				
Basic system	200,000	21,958	25,100	47,058	12.9	
With primary treatment	800,000	87,832	65,100	152,932		
With activated sludge	1,000,000	109,790	99,510	209,300		
With stabilization ponds	450,000	49,405	48,780	98,185	26.9	

^aCourtesy of Public Works Journal Corporation, Ridgewood, New Jersey.

bBased on an ENRCC index of 1900.

Capital recovery factor = 0.10979 (15 years at 7 percent).

Table 5. Energy comparison of sludge dewatering equipment (Jacobs, 1977).

	kw Demand cost/mo.	kwh Usage cost/mo.	Monthly cost	Annual cost
Belt press filters	40.0 kw	6105 kwh		
	\$112.00	\$153.85	\$265.85	\$3190.20
Vacuum filter	75.5 kw	8750 kwh		
	\$210.00	\$220.50	\$430.50	\$5166.00
Centrifuges	108.0 kw	13,700 kwh		
	\$299.60	\$313.05	\$612.65	\$7351.80

Notes:

Table 6. Energy comparison of biological treatment systems a,b,c (Jacobs, 1977).f

F + 0.5 Co.E., 30 West 5c	Completely mixed AS ^e	Extended aeration ASd, e	Carousel extended aeration ASd, e	Pure oxygen AS	Bio-Disk
kw demand	550	540	525	525	425
Cost	\$ 1,070	\$ 1,053	\$ 1,053	\$ 1,020	\$ 800
kwh usage	230,000	236,000	218,000	216,000	188,000
Cost	\$ 3,423	\$ 3,498	\$ 3,282	\$ 3,247	\$ 2,701
Monthly cost Annual cost	\$ 4,498 \$53,976	\$ 4,542 \$54,504	\$ 4,335 \$52,020	\$ 4,076 \$48,804	\$ 3,501 \$42,012

^aComparison based on entire plant energy consumption.

Based on dewatering 75,000 lb/week of waste activated sludge at 3 percent feed, and approximately 20 percent cake solids concentration.

^{2.} Costs based on varying rate schedule.

^aCourtesy of Water and Sewage Works, Chicago, Illinois.

^bIncludes consideration of differences in sludge quantity and characteristics.

Costs based on varying rate schedule.

dResult in higher effluent quality.

eActivated sludge.

f Courtesy of Water and Sewage Works, Chicago, Illinois.

METHODS AND PROCEDURES

Equation Development

The graphs presented by Wesner et al. (1978) were converted to lines of best fit at the lower design flow rates (0.1 - 5.0 mgd) and used to calculate the energy requirements for small systems such as those employed at military installations. Least-squares fits of the linear and curvilinear lines were employed. A power function was used to fit the linear lines on the log-log plots and a polynomial equation was used to fit the curvilinear lines. The forms of the two functions are shown below.

$$log Y = a + b (log X) + c (log X)^2 + d (log X)^3$$
Polynomial function

Various combinations of the unit operations and processes were selected to form the most commonly used wastewater treatment systems. Energy requirements for each component of the system for various design flow rates were estimated using the equations of best fit. These results were tabulated for easy comparison between various types of treatment systems.

Design Parameters

Design parameters for all of the unit operations and processes are shown with the energy equations for each operation or process in Appendix A. Additional detail can be obtained by referring to the report by Wesner et al. (1978). The energy relationships for the conventional and advanced wastewater treatment processes are unmodified, but it was necessary to modify the land application energy relationships to conform to accepted practice in cold regions. The slow rate and overland flow application seasons were modified from five months per year to 250 days per year to more realistically reflect actual practice. Rapid infiltration application seasons extend over 365 days per year and not five months per year as shown in the Wesner et al. (1978) report.

Wastewater Characteristics

Raw wastewater and sludge characteristics used to develop the energy relationships are presented in Appendixes B and C, respectively.

Energy Recovery

The potential energy available in digester gas was estimated using a figure of 6.5 million Btu/million gallons of wastewater treated. This value is based upon a mixture of primary and waste activated sludge, and the value will vary with the type of sludge and must be adjusted when better data are available. However, a value of 6.5 million Btu/million gallons of wastewater is satisfactory for estimating purposes and will yield a conservative estimate for net energy consumption.

Btu available in digester gas can be converted to electricity, and a conversion factor of 11,400 Btu per kwh can be used to estimate the electricity generated. The conversion factor assumes an electrical generation efficiency of 30 percent. The gas utilization system also requires energy and this must be considered when comparing systems.

Secondary Energy

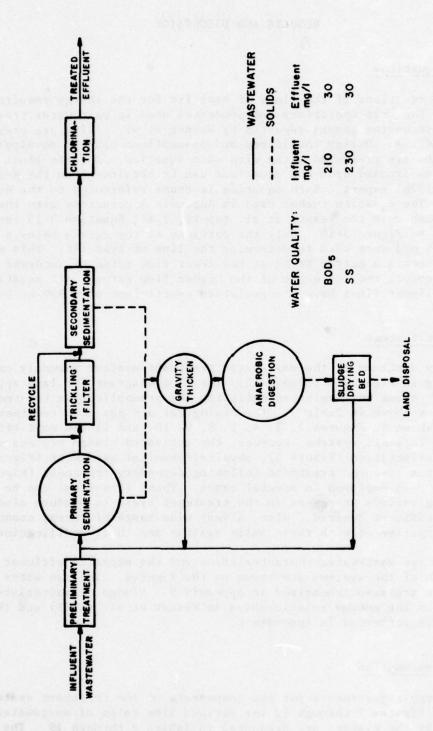
Secondary energy requirements are the amounts of energy needed to produce consumable materials used in a wastewater treatment system. Disinfectants, coagulants, sludge conditioning chemicals and regeneration of activated carbon and ion exchange resins require energy in their production, and this energy must be considered when comparing the energy efficiency of various systems.

Methods of construction, materials of construction, seasonal variations and other factors also influence the energy budget for a treatment system, but to a lesser degree than the primary factors such as direct energy consumption on a daily basis. Only the direct energy consumption and the secondary energy requirements are considered in this report.

RESULTS AND DISCUSSION

Energy Equations

The equations of the lines of best fit for the energy requirements of the unit operations and processes used in wastewater treatment based on the graphs reported by Wesner et al. (1978) are presented in Appendix A. Design conditions and assumptions used in developing the graphs are presented along with each equation. Details about the conditions imposed upon the equations can be obtained from the Wesner et al. (1978) report. Each equation is cross referenced to the Wesner et al. report. The equation number used in Appendix A coincides with the figure number in the Wesner et al. report; i.e., Equation 3-15 corresponds to Figure 3-15. Only the portions of the curves below a flow rate of 5 mgd were used to determine the line of best fit. This was done to obtain a better trend at the lower flow rates of interest rather than introduce the influence of the higher flow rates. All equations for the linear lines have a correlation coefficient of 0.999 or better.


Treatment Systems

Flow diagrams of the wastewater treatment systems commonly employed are shown in Figures 2 through 12. The flow diagrams for land applications systems were selected utilizing the preapplication treatment guidelines shown in Table 7. The biological and physical treatment systems shown in Figures 2, 3, 4, 7, 8, 9, 10, and 11 are most often employed in small systems; however, the activated sludge process with sludge incineration (Figure 5), physical-chemical treatment (Figure 6), and the advanced treatment following secondary treatment (Figure 12) have been employed in special cases. These 11 systems can be modified by adding various processes in the treatment train to produce almost any quality effluent desired. Also, a very wide range of energy consumption can be experienced with these basic systems and their modifications.

The raw wastewater characteristics and the expected effluent quality from each of the systems are shown on the figures. The raw water characteristics are also summarized in Appendix B. Sludge characteristics used to develop the energy relationships in Wesner et al. (1978) and this report are presented in Appendix C.

Energy Consumption

Energy requirements for the components of the treatment systems shown in Figures 2 through 12 for various flow rates of wastewater treated by the systems are presented in Tables 8 through 19. The table

Trickling filter treatment with anaerobic digestion $(800_5 = 5-day, 20^{\circ}C)$ biochemical oxygen demand; SS = suspended solids). Figure 2.

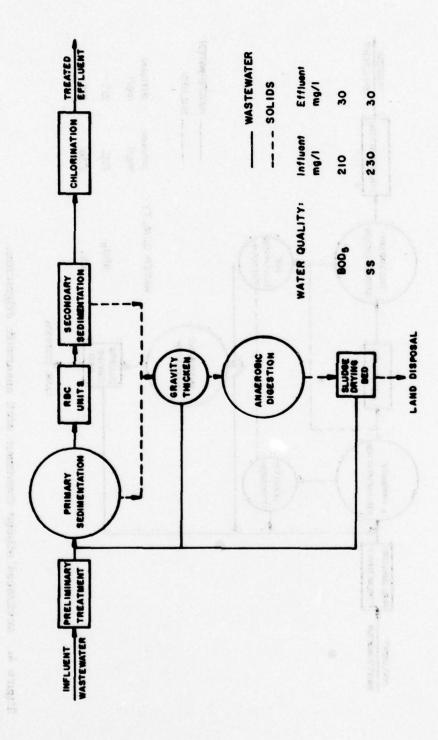
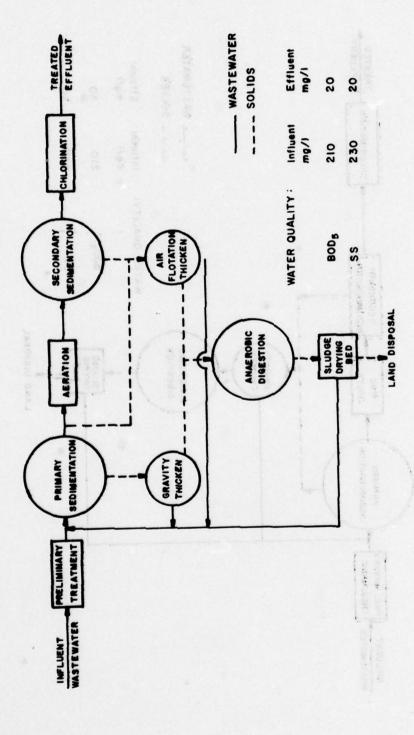



Figure 3. Rotating biological contactor treatment with anaerobic digestion.

ANTHAR I'M WATHING PICHOGGICST CORESCO.

Figure 4. Activated sludge treatment with anaerobic digestion.

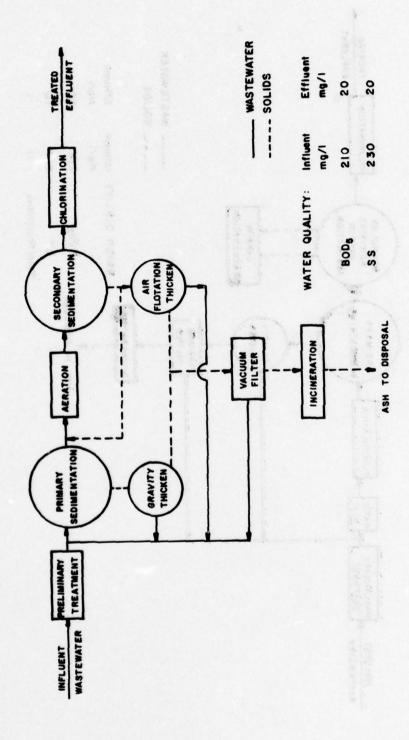


Figure 5. Activated sludge treatment with sludge incineration.

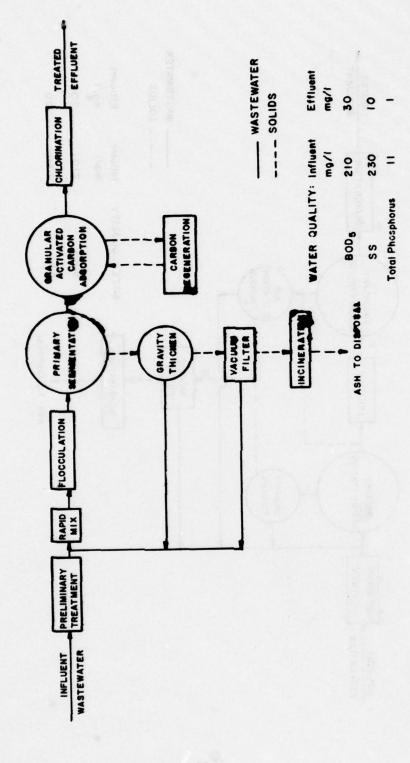


Figure 6. Physical-chemical advanced secondary treature.

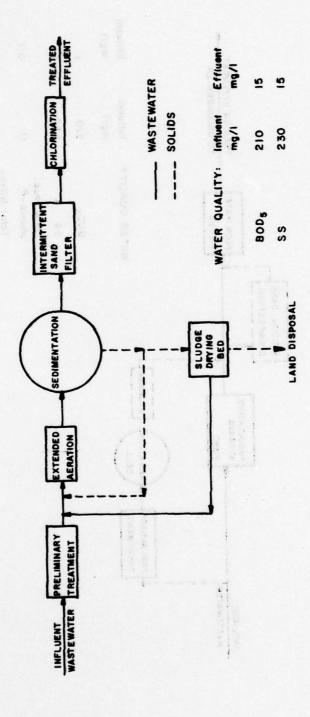
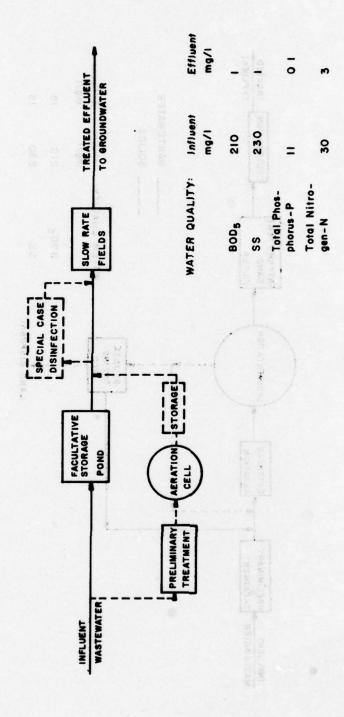



Figure 7. Extended aeration with intermittent sand filter.

Signes V. Extended setaltical with interceptant sand filter.

Figure 8. Slow rate irrigation.

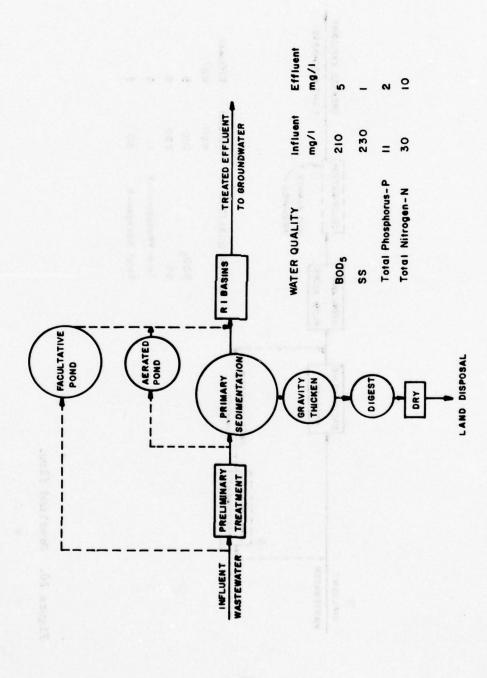


Figure 9. Rapid infiltration.

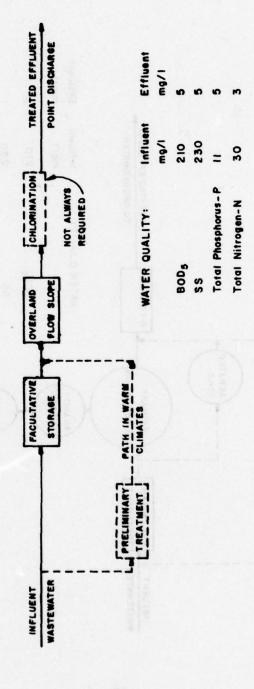


Figure 10. Overland flow.

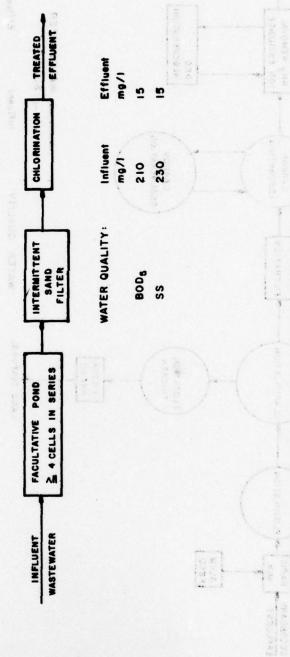


Figure 11. Facultative lagoon-intermittent sand filter treatment.

Figure 12. Advanced wastewater treatment.

- Table 7. Guidance for assessing level of preapplication treatment for land treatment systems (EPA, 1978).
 - I. Slow-rate systems (reference sources include Water Quality Criteria 1972, EPA-R3-73-003, Water Quality Criteria EPA 1976, and various state guidelines).
 - A. Primary treatment acceptable for isolated locations with restricted public access and when limited to crops not for direct human consumption.
 - B. Biological treatment by lagoons or inplant processes plus control of fecal coliform count to less than 1,000 MPN/100 ml^a acceptable for controlled agricultural irrigation except for human food crops to be eaten raw.
 - C. Biological treatment by lagoons or inplant processes with additional BOD or SS control as needed for aesthetics plus disinfection to log mean of 200/100 ml (EPA fecal coliform criteria for bathing waters) - acceptable for application in public access areas such as parks and golf courses.

II. Rapid-infiltration systems

- A. Primary treatment acceptable for isolated locations with restricted public access.
- B. Biological treatment by lagoons or inplant processes acceptable for urban locations with controlled public access.

III. Overland-flow systems

- A. Screening or comminution acceptable for isolated sites with no public access.
- B. Screening or comminution plus aeration to control odors during storage or application - acceptable for urban locations with no public access.

number corresponds to the figure number; i.e., Table 8 is a listing of the energy requirements for a trickling filter treatment system with anaerobic digestion (Figure 2). The last column in each table lists the equations used to calculate the values (Appendix A).

Table 20 shows the energy requirements for components frequently appended to secondary treatment systems to produce a better quality effluent. By modifying the basic systems shown in Figures 2 through 12, it is possible to develop the energy requirements for almost any

Most probable number of coliform bacteria per 100 ml of sample.

Energy requirements for components of trickling filter system with anaerobic digestion in the intermountain area of the USA. Table 8.

				Capac	ity of t	astevate	r Treats	Capacity of Wastewater Treatment Facility	11ty					
Orace de la constante de la co	0.0	0.05 mgd	0.1	0.1 mgd	0.5 mgd	p84	1.0	1.0 mg3	3.0 mgd	p Su	5.0 mgd	p 9m		
or Process	Ene Requir	Energy Requirements	Ene Requir	Energy Requirements	Ene Requir	Energy Requirements	Ene Requir	Energy Requirements	Requir	Energy Requirements	Requir	Energy Requirements	Coments	
	Elec- tricity, kwh/yr	Fuel, Million Btu/yr	Elec- tridty, kwh/yr	Fuel, Million Btu/yr	Elec- refiley, kwh/yr	Fuel, Million Btu/yr	Elec- tricity, kwh/yr	Fuel, Million Btu/yr	Elec- tricity, kwh/yr	Fuel, Million Btu/yr	Elec- tricity, kwh/yr	Fuel, Million Btu/yr	10 k 9 11 10 11 10 1	
Wastewater Treatment Raw Sewage Pumping Preliminary Treatment	1,200		2,280		10,200	(49)	19,400		53,900		86,700		TD## - 10 ft	ī
Bar Screen Comminutor Grit Removal-Non Agrated	465 1,700 260		2,180		1,050 3,700 450		1,200		1,450		1,590 8,810 780			7 2 2
Primary Sedimentation Trickling Piless (Bock Modic	2,530		3,190		5,420		6,820		9,970		11,990		Circular Tanks	3-12
Recirculation 2:1) Secondary Sedimentation	3,670		7,200		31,950 5,810		61,300		172,200		278,300			3-16
Primary energy Secondary energy	68)		1,240		4,700		9,330		29,170 (495)		49,520 (825)		Dosage = 10 mg/1 (Secondary Energy	3-74
Sub-Total	13,793		20,802		63,363		110,655		285,875		452,235		Requirements)	
Sludge Treatment Gravity Thickening Anaerobic Digestion High Rate	1,220	29	2,435	124	316	632	610	1,270	1,730	3,860	2,730 3,860 121,760	6,460	Detention Time = 20 days	3-85
Drying Beds Hauling-Truck Landfill Disposal	111	0.2 13 1.6	22	3.3	145	2 128 16	282	256	833	27.68	1, 395	1,278	Mixing = 1/2 HP/1000	7.38 3.98 7.100 7.104
Sub-Total	1,272	11	2,536	154	12,641	178	25,246	1,563	75,623	4,739	4,739 125,885	7,923		
Other Building Heating Building Cooling	661	148	264	8	857	320	949	433	1,228	745	1,726	886		3-83
Total for Treatment System	15,264	225	23,582	335	76,462	1,098	,098 136,547	1,996 3	,996 362,726	5,484	5,484 579,846	8.911		
Digester Gas Utilization System Total with Gas Utilization	10,070	10	14,480	-	34,980		52,350	2.311 4	315 102,950	864	348 723, 386	1,358		5-18
Energy Recovered-Digester Gas		119		237		1,187		2,373		7,119	200	11,865		

TDH - total dynamic head.

Energy requirements for components of a rotating biological contactor treatment system with anaerobic digestion located in the intermountain area of the USA. Table 9.

				Capa	city of	Wastewat	er Treat	Capacity of Wastewater Treatment Facility	111ty					
	0.0	0.05 mgd	0.1	pau	0.5	0.5 mgd	1.0	1.0 mgd	3.0	3.0 mgd	5.0 mgd	pan		
Operation or Process	End Requir	Energy Requirements	Ene Requir	Energy Requirements	Ene Requir	Energy Requirements	Eng	Energy Requirements	Ene Requir	Energy Requirements	Energy Requiremen	Energy Requirements	Comments	ut.
	Elec- tricity, kwh/yr	Fuel, Million Btu/yr	Elec- tricity, kwh/yr	Fuel, Million Btu/yr	Elec- tricity, kwh/yr	Fuel, Million Btu/yr	Elec- udcity, kwh/yr	Fuel, Million Btu/yr	Elec- cricity, kwh/yr	Fuel, Million Btu/yr	Elec- tracity, kwh/yr	Fuel, Million Bcu/yr	Activities generally and a second sec	
dastewater Treatment Raw Sewage Pumping Preliminary Treatment	1,200		2,280		10,200		19,400		53,900		86,700		TDH - 10 ft	17
Bar Screen	465		079		1,050		1,200		1,450		1,590			3-7
Comminutor Grit Removel-Non Aerared	1,700		2,180		3,700		530		080'/		780			I I
Primary Sedimentation	2,530		3,190		5,420		6,820		9,970		11,990			3-15
RBC Units	3,650		7,300		36,500		73,000		219,000		365,000		Dense Media	4
Secondary Sedimentation Disinfection (Cl.)	3,130		3,750		5,810		7,230		10,920		13,720			4
Primary energy Secondary energy	830		1,240		4,700		9,330		29,170		49,520		Dosage - 10 mg/1	37.4
Sub-Total	13,773		20,902		67,913		122,355		332,675		538,935			
Sludge Treatment Gravity Thickening Anverobic Digestion High Rate	35	62	2,435	124	316	632	610	1,270	1,730	3,860	=	9,460		3-85
Dry.ng Beds Hauling-Truck Landill Disposal	17	13	32	3.3	145	2 128 16	282	256	833	25.2	1,395	1,278		7-98 7-100 7-104
Sub-Total	1,272	11	2,536	154	12,641	178	25,246	1,563	75,623	4,739	4,739 125,885	7,923		
Other Bullding Heating Building Cooling	199	148	244	181	857	320	979	433	1,228	745	1,726	886		3-83
Total for freatment System	15,244	225	23,682	335	81,012	1,098	1,098 148,247	1,996	1,996 409,526	5,484	3,484 666,546	8,911		
uigester as Utilization System foral with Gas Utilization Energy Recovered-Digester Gas	10,070	10 235 119	14,480	350 237	14,980	1,257	52,350	315 2,311 2,373	102,950	6,348	864 143,540 348 810,086 119	1,358 10,269 11,865		5-18

Energy requirements for components of activated sludge system with anaerobic digestion in the intermountain area of the USA. Table 10.

				Capac	ity of h	Capacity of Wastewater Treatment Facility	r Treats	ent Fact	litey					
	0.05	S Rgd	0.1	0.1 mgd	0.5	p Su	1.0 mgd	ps	3.0	påu	5.0 mgd	P 9		
Operation or Process	Requir	Energy Requirements	Requir	Energy Requirements	Requir	Energy Requirements	Ene Requir	Energy Requirements	Ene Requir	Energy Requirements	Ene Requir	Energy Requirements	Connents	
	Elec- tridty, kwh/yr	Fuel, Million Btu/yr	Elec- tracky, kwh/yr	Fuel, Militon Bru/yr	Elec- tricity, kuh/yr	Fuel, Million 3tu/yr	Fuel, Elec- Million tricity, 3tu/yr kwh/yr	Fuel, Million Btu/yr	Elec- tricity, kwh/yr	Fuel, Miiilon Btu/yr	Elec- tricity, kwh/yr	Fuel, Million Btu/yr		
Wastewater Treatment Bay Sevage Pumping	1,200		2,280		10,200		005'61		53,900		86,700		TDH - 10 ft	ī
Bar Screen	599		940		1,050		,,200		057.		1,590			7
Comminutor	1,700		2,180		3,700		7,680		7,080		8,810			3-8
Grit Removal-Aerated	10,610		11,400		12,290		13,270		17,800		22,670			1.
Primary Sedimentation Aeration-Mechanical	8,000		16,000		80,000		160,000		480,000		800,000		Complete Mix	7-28
Secondary Sedimentation	4.470		5,010		10,390		16,400		37,030		54,870			1
Primary energy Secondary energy	830		1,240		4,700		9,330		29, 170		49,520		Dosage - 10 mg/:	13
Sub-fotal	29,813		41,957		127.833		231,265		636,865	-	\$26,975			
Sludge Treatment Gravity Thickening Air Flotation Thickening Anaerobir Digestion	35 6.74 1.220	٨	7,940	701	32,170 12,180	818	610 58,800 24,354	1,040	1,730	3,110	2,730 238,450 121,760	5, 180	H1 xing - 1/2	2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
													Detention Time .	₹105
urying Beds Hauling-Truck Landtill Disposal	11	0.2 12 1.5	22	3.1	145	120	242	31	633	207,	1,395	1,200		7 198 91 17 401 7
Sub-Total	5,612	99	10,476	132	44,811	655	84,046	1,315	1,315 225,523	3,936	3,936 364,335	6,555		
Other Building Heating Building Cooling	199	348	244	181	857	320	979	133	1,228	745	1.726			27
Total for Treatment System Digester Gas Utilization System Total With Gas Utilization	35,624	214	\$2.677 14,480 67,157	22 23	34,980	975	315,957	- :	11,748 863,646 315 102,950	864	4.681 1,403,036 864 143,540	1,543		¥1-¥
Energy Recovered-Digester Gas	No. Co.	119		137	100	1,187	2000	2,373	S ISP	7,119	AST TON	11.865		

Energy requirements for components of activated sludge system with sludge incineration in the intermountain area of the USA. Table 11.

			-	Capac	ity of 1	lastevate	T Treats	Capacity of Wastewater Trestment Facility	litty						
	0.0	9.05 mgd	0.1	p 8 m	0.5	p 8	1.0 mgd	99	3.0 mgd	p	5.0	7			
reration :: Process	En.	Energy Requirements	End End	Energy Requirements	Requir	Energy Requirements	Energy Requirement	Energy Requirements	Energy Requirements	187	Energy Requirements	rgv ments		Coment	
	Elec- tridky, kwh/yr	Fuel, Million Btu/yr	Elec- tracity, buh/yr	Fuel. Million Btu/yr	Elec- tricity. lash/vr	Fuel, Militon Btu/yr	Elec- erfeity, kwh/yr	Fuel, Hillion Btu/yr	Elec- tracity, kwh/yr	Fuel, Million Btu/yr	Elec- tracity, kwh/yr	Fuel, Million Btu/yr			
Mastevater Treatment Nav Sevage Pumping	1,200		2,280		10,200		19,400		53,900		86.700		TDH - 10 fc	ı	ī
har Screen	465		949		1,050		1,200		1,450		1,590				4
Comfautor	1,700		2,180		3,700		4,680		7,080		8,810				1
Grit Removal-Aerated	10,610		11.400		12,290		13,270		17,800		22,670				~
Primery Sedimentation Aeration-Mechanical	8.000		16.000		2,420		160.000		9.970		800.000		Complete Mx	Tanks	1,22
S.condary Sedimentation	4,470		5,010		10,390		16,400		37,030		54.870			200	~
Primary energy	830		1,240		4,700		9,330		29,170		49,520		Dosage - 10 mg/1	1/3 01	7.7
Secondary energy	•		,		2		COT		432		679				•
Sub-Total	29,813		41,957		127,833		731,265		636,895		1,036,975				
Sludge Treatment Gravity Thickening	35		5		316		919		1,730		2,730				28.5
Air Flotatiun Thickening	340		7,940		32,170		58,800		152,900		238,450				3-8
Vacuum Filter Incineration	2,250	145	3,870	287	12,350	1,440	20,630	2,880	46,520	8,630	63,020	14,390		J-1111,	
Ash Hauling Lanc'il, Disposal		= 7.1		22 2.8		901		217		651		1,085	20 miles	20 miles round grip	
Sub-Total	6,843	157	25,199	112	63,786	1,563	1,563 105,230	3,125	3,125 246,610	9,365	9,365 372,100	15,615			
Other Building Heating Building Cooling	661	16	**	•	458	320	979	613	1,228	745	1,726	8			11
Total for Treatment System	49,835	308	67,400		193 :92,077	1,883	1,883 337,141	3,558	3,558 884,733	10,110	10, 110 1419, 801	16,603			

Energy requirements for components of a physical-chemical advanced secondary wastewater treatment system located in the intermountain area of the USA. Table 12.

				Capar	tey of W	Capacity of Wastewater Treatment Facility	r Treats	ent Faci	1111			80.00		
	0.05 mgd	p 911	0.1 mgd	p B	0.5 mgd	p	1.0 mgd	p8a	3.0 mgd	7	5.0 mgd	pon		
Operation or Process	Ene Requir	Energy Requirements	Requir	Energy Requirements	Energy	Energy	Requir	Energy Requirements	Energy Requirements	rents	Energy Requirement	Energy Requirements	Commute	
Location and the second	Elec- tradty, kwh/yr	Elec- Fuel, indcty, Million kwh/yr Btu/yr	Elec- tricity, kut/yr	Fuel, Million Stu/yr	Elec- Fuel, tricity, Million kut/yr Btu/yr	Fuel, Million Btu/yr	Elec- ddky.	Fuel, Million Btu/yr	Elec- Fuel, Elcity, Million kwh/yr Btu/yr	Fuel, Million Btu/yr	Elec- tadty, kuh/yr	Fuel. Militon Btu/yr		
Vastewater Treatment Raw Sewage Pumping	1,200		2,280		10,200		19,400		53,900		86,700		TDH - 10 ft	ī
Ber Corner	597		640		90		1 200		957		1 500			17
Cominutor	1.700		2.180		3,700		7.680		7.080		8.810			11
Grit Removal-Aerated	10,610		11,400		12,290		13,270		17,800		22,670			2
Chemical Clarification-FeCig Primary Energy	8,580		8,950		14,900		21,850		48,500		75,570		Dosage - 200 mg/1	i
Activated Carbon	2		?		RE		3		31.7		3,300			!
Adsorption Regeneration	3,100	200	3,800	700	19,000	7,000	62,000 38,000	4,000	186,000	12,000	310,000	20,000	Upflow Expanded Bed	îî
Primary Energy Secondary Energy	830		1,240		4,700		9,330		29,170		49,520		Dosage - 10 mg/1	ii
Sub-Total	28,428	200	36,777	007	97,273	2,000	2,000 170,595	7,000	567'097 000'7	12,000	12,000 749,185	20,000		
Sludge Treatment Gravity Thickening Vacuum Filter Incineration	35 14,000 3,870	007	16,310	900	31,400 21,000	3,930	610 45,650 34,860	7,800	1,730	23,470	2,730 142,300 114,960	39,140	Ĭ	7.11.7.112,
Ash Hauling Landfill Disposal		24		22		220		450		1,400		2,300	20 mile round trip	7 100
Sub-Total	17,905	767	22,839	870	52,716	4,245	81,120	8,450	8,450 176,930	25,420	25,420 259,990	42,440		
Other Building Heating Building Cooling	199	148	244	181	857	320	979	667	1,228	745	1,726	986		11
for Treatment System	46,532	782	29,860	1,451	1,451 150,44/	6,565	6,565 252,361	12,883	12,883 638,653	38, 165 1	38, 165 1010, 901	63,428		

Energy requirements for components of an extended aeration system with slow sand filter located in the intermountain area of the USA. Table 13.

				Capac	ity of h	Capacity of Wastewater Treatment Fauility	r Treatm	ent Faci	11ty					
	0.05 mgd	påu	0.1	0.1 mgd	0.5 mgd	pgu	1.0 mgd	pau	3.0 mgd	pøm	5.0 mgd	p8u		
Operation or Process	Requir	Energy Requirements	En. Requir	Energy Requirements	Ene	Energy Requirements	Ene	Energy Requirements	Ene	Energy Requirements	Energy	Energy Requirements	Compenies	* 104
Milkon grand	Elec- tridty, kwh/yr	Elec- Fuel, tricity, Million kwh/yr Btu/yr		Fuel, Militon Btu/yr	Elec- tridty, kwh/vr	Elec- Fuel, Elec- tricity, Million tricity, kwh/vr 8tu/yr kwh/yr	Elec- trkity, kwh/yr	Fuel. Million Btu/yr	Elec- tricity, kwh/yr	Elec- Fuel, tricity, Million kwh/yr Btu/yr	Elec- trikity, kwh/yr	Fuel. Million Btu/yr		
Wastevater freatment Raw Sevage Pumping	1,200		2,280		10,200		19,400		53,900		86,700		TDH - 10 ft	ī
Rar Screen	597		640		050		1 200		1 450		1 590			1.1
Comminutor	1.700		2,180		3,700		4.680		7.080		8.810			
Grit Removal-Aerated	10,610		11,400		12,290		13,270		17,800		22,679			3-9
Secondary Sedimentation	17,500		35,000		175,000		16,400	1	37,030		54,870		Mechanical	3-28
Filter	965	2.5	1,135	•	5,070	25	6,660	20	26,830	151	43,150	252	TDH = 5 ft; Diesel Powered	1 Powered
The state of the s													Hydraulic Loading Equipment Hydraulic Loading Rate = 0.4 mgad = 12 hr operation of truck and cleaning equipment/acre	s reduipment ng Rate = of truck dpment/aci
													6 cleanings/yr. Two gai- lons of fuel/hr. 1 gal	Two gai- 1 gal
Disinfection (Cl ₂) Primary Energy Secondary Energy	830		1,240		4,700		9,330		29,170		49,520		Dosage = 10 mg/1	77.4
Sub-Total	37,379	2.5	58,902	5	\$ 222,483	25 4	25 424,105	50 1	50 1,223,755	151	151 2018,135	252		
Sludge Treatment Drying Beds Hauling-Truck Landfill Disposal	79	0.2 12 1.5	121	0.3 24 3.1	570	1.7	1,140	3.3 240 31	3,530	9.9	070.9	16.5		3-198 3-100 3-104
Sub-Total	99	14	171	27	57"	137	1,140	274	3,530	823	6,040	1,371		
Other Building Heating Ruffding Cooling	661	14.8	797	3	458	370	979	667	1.228	745	1.726	886		1 1
Total for Treatment System	17 643	164	59.267	2113	113 222 511	7 687	168 507 687	1571	747 1228 513	1 719	1 719 2 025 901	2,611		

Million gallons per acre per day.

Energy requirements for components of slow rate (irrigation) land treatment system located in the intermountain area of the USA. Table 14.

				Capa	city of	Wastevat	er Treat	Capacity of Wastewater Treatment Facility	Lifev		-	-			
	0.05 mgd	P81	0.1 mgd	pø	0.5	0.5 mgd	1.0 mgd	p8u	3.0 mgd	på	5.0 mgd	p			
Operation	Energy Requirements	ty ments	Energy Requirements	rgy ments	Ene Requir	Energy Requirements	Ene	Energy Requirements	Energy Requirement	Energy Requirements	Energy Requirement	Energy Requirements		Comments	
	Elec- Fuel, tricity, Million kwh/yr Btu/yr			Elec- Fuel, tricity, Million kwh/yr Btu/yr	Elec- tricity, kwh/yr	Elec- Fuel, Elec- Fuel, Elec- tricity, Million tricity, Million tricity, kwh/yr Btu/yr kwh/yr Btu/yr kwh/yr	Electricity, kwh/yr	Fuel, Elec- Million tricity, Btu/yr kwh/yr		Fuel, Million Btu/yr	Fuel, Elec- Million cricity, Btu/yr kwh/yr	Fuel, Million Btu/yr			
Wastewater Treatment Raw Sewage Pimping	1,200		7,280		10,200		19,400		53,900		86,700		TDH - 10 ft	10 fe	j
Preliminary Treatment Bar Screen Comminutor Aerated Pond	465 1,700 13,000		540 2,180 26,000		1,050 3,700 130,000		1,200		1,450	4	1,590 8,810 1,300,000				7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Sub-Total	16,365		31,100		144,950		285.280		842,430	1,	1,397,100				
Spray Irrigation Solid Set Center Pivot Ridge & P. Irrow Flooding	8,970 13,500 1,400	-	17,570 27,000 2,800	7	83,720 135,000 14,000	9	164,000 270,000 28,000	50	810,000 84,000	1 09	781,350 1,350,000 60 140,000	001			F 7 6
Other Building Heating Building Cooling	199	148	747	181	458	320	979	133	1,228	745	1,726	988			3-83
Total For Treatment System- Aerared Ponds Solid Set Center Pivor Ridge & urrow-Flooding	25,534 30,064 17,964	871 871	48,914 58,344 34,144	E 88 8	. 81 229, 128 181 280, 408 183 159, 408		320 449,926 320 555,926 330 313,926	£33 £43	433 1,319,708 433 1,653,658 443 927,658	745 745 805	745 2,180,176 745 2,748,826 805 1,538,826	988 988 1,088			
Facultative Ponds Solid Set Center Pivot Ridge & Furrow-Flooding	16, 869	148 148 149	20,094	181 181 18.	94,378 145,658 24,658		320 184.046 320 290,046 330 48,046		433 531,178 433 865,128 453 139,128	745	745 869,776 745 1438,426 805 228,426	988 988 1,088			

Energy requirements for components of a primary wastewater treatment plant followed by rapid infiltration land treatment systems located in the intermountain area of the USA. Table 15.

The second second				Capa	stty of	Capacity of Wastewater Treatment Facility	er Treat	ment Fac.	ility					
Onerarion	0.05 mgd	ngd	0.1 mgd	p8u	0.5 mgd	pgm	bgm (.)	pßm	3.0 mgd	pgu	5.0 mgd	pau	Comments	
or Process	Ene Requir	Energy Requirements	Ene Requir	Energy Requirements	Ene	Energy Requirements	Energy	Energy Requirements	Energy Requirements	ments	Energy Requireme	Energy Requirements		
	Elec- tricity, kwh/yr	Fuel. Elec- Million tricity, Btu/yr kwh/yr	Elec- tricity, kwh/yr	Fuel, Elec- Million tritity, Btu/yr kwh/yr	Elec- tricity, kwh/yr	Fue, Million Btu/yr	Fue, Elec- Million tricity, Btu/yr kwh/yr	Fuel, Elec- Million tricity, Btu/yr kwh/yr	Elec- tricity, kwh/yr	Fuel, Elec- Million tricity, Btu/yr kwh/yr	Elec- tricity, kwh/yr	Fuel. Million Btu/yr		
Wastewater Treatment Raw Sewage Pumping	1,200		2,280		10,200		19,400		53,900		86,700		TDH - 10 fc	ī
Preliminary Treatment Bar Screen	465		640		1,050		1,200		1,450		1,590			72
Grit Removal-Non Aerated Primary Sedimentation	260		3, 190		450		5.30		9,970		11,990		Circular Tank	11
Sub-Total	6,155		8,595		20,820		32,630		73,090		109,870			
Rapid Infiltration Flooding	141		287		1,480		3,000		9,200		15, 190			3-81
Sludge Treatment Gravity Thickening Anaerobi. Digestion-High Rate Drying Beds Hauling-Truck	1,220	62 0.2 13 1.6	2,435	124 0.4 26 3.3	316 12,180 145	632 2 128 16	610 24,354 282	1,270	1,730	3,860 13 767 99	2,736 121,760 1,395	6,460 21 1,278 164		28.7 2017 2017 2017
Sub-Total	1,272		2,536	154	12,641	178	25,246	1,563	75,623	4, 39	175,885	7,923		
Other Building Heating Building Cooling	199	148	244	181	458	320	979	433	1,228	745	1,726	886		7.83
Total for Treatment Systen	1,767	225	11,662	335	35,399	1,098	61,522	1,996	1,996 159,141	1.48.	J. 48. 252,971	8,911		

Energy requirements for components of rapid infiltration land treatment systems located in the intermountain area of the USA. Table 16.

				Capac	ity of W.	astevate	r Treatm	Capacity of Wastewater Treatment Facility	itty					
	0.05 mgd	pgm	0.1 mgd	p8u	0.5 mgd	p8m	1.0 mgd	pBu	3.0 mgd	p8u	5.0 mgd	p 8		
Operation or Process	Ene	Energy Requirements	Ene Requir	Energy Requirements	Energy Requireme	Energy Requirements	Ene	Energy Requirements	Energy Requiremen	Energy Requirements	Ene Requir	Energy Requirements	Comments	
	Elec- rricity, kwh/yr	Fuel, Elec- Million tricity, Btu/yr kwh/yr	Elec- tricity, kwh/yr	Fuel, Elec- Million tricity, Btu/yr kuh/yr		Fuel, Elec- Million tricity, Btu/yr kwh/yr		Fuel, Million Btu/yr		Fuel, Elec- Million cricity, Btu/yr kwh/yr	Fuel, Elec- Million tricity, Btu/yr kwh/yr	Fuel, Million Btu/yr		
dastewater Treatment Raw Sewage Pumping	1,200		2,280		10,200		19,400		\$3,900		86,700		TDH - 10 ft	ĭ
Preliminary Treatment Bar Screen	599		079		1,050		1,200		1,450		1,590			7,
Comminutor Aerared Pond	13,000		26,000		3,700		260,000		7,080	-	8,810			3-32
Sub-Total	16,365		31,100		144,950		285,280		842,430	-	1,397,100			
Rapid Infiltration Flooding	141		287		1,480		3,000		9,200		15,490			3-8
Other Building Hearing Building Cooling	199	871	777	181	857	320	979	64	1,228	745	1,726	986		3-83
Total for Treatment System- Aerated Ponds Flooding	16,705	148	31,631	181	181 146.888		320 288,926	433	433 852,858	745	745 1,414,316	988		7.
Total for Treatment System- Facultative Ponds Flooding	1.540	148	2,811	181	12,138	320	320 23,046		433 64,328	745	745 103,916	988	14.0 14.1 14.0 14.0 14.0 14.0 14.0 14.0	1

Energy requirements for components of overland flow land treatment systems located in the intermountain area of the USA. Table 17.

				Capa	city of	Wastewat	er Treat	Capacity of Wastewater Treatment Facility	ility					
	0.05	0.05 mgd	0.01 mgd	p8m	0.5 mgd	p8t	1.0 mgd	p&q	3.0 mgd	pau	5.0 mgd	pån		
Uperation or Process	Requi	Energy Requirements	Ene Requir	Energy Requirements	Energy Requirements	rgy	Ene	Energy Requirements	Energy Requirement	Energy Requirements	Ene Requir	Energy Requirements	Comments	
	Elec- tricity, kwh/yr	Fuel, Elec- Million tricity, Btu/yr kwh/yr	Elec- tricity, kwh/yr	Fuel, Elec- Million tricity, Btu/yr kwh/yr		Fuel, Elec- Million tricity, Btu/yr kwh/yr	Elec- tricity, kwh/yr	Fuel, Elec- Million tricity, Btu/yr kwh/yr		Fuel, Elec- Million tricity, Btu/yr kwh/yr	Elec- tricity, kwh/yr	Fuel, Million Btu/yr		
Wastewater Treatment Rav Sevage Pumping	1,200		2,280		10,200		19,400		53,900	13	86,700		TDH - 10 fc	7
Bar Screen Comminutor Aerated Pond	1,700		2,180 26,000		3,700		1,200		1,450		1,590 8,810 1,300,000			3-1
Sub-Total	16,365		31,100		144,950		285,280	-	842,430		1,392,100			
Overland Flow Flooding Solid Set Sprinklers	460 8,500		920		65,000		9,200	,	27,600		46,000			3-81
Disinfection (CL2) Primary Energy Secondary Energy	830		1,240		4,700		9,330		29,170		49,520		Dosage = 10 mg/1	3-74
Other Building Heating Building Cooling	661	148	244	181	458	320	979	733	1,228	745	1,726	886		3-83
Total for Treatment System- Aerated Ponds Flooding Solid Set Sprinklers	17,862 25,902	871 871	33,521	181 1	181 154,791	320	320 304,621 320 465,421	433 9	433 900,923	745 1	745 1,495,171	988 888		
Total for Treatment System- Facultative Ponds Flooding Solid Set Sprinklers	2,697	148	4,701	181	20,041	320	320 38,741	433 1	433 112, 393	745	745 184,771	886		

Energy requirements for components of a facultative lagoon-intermittent sand filter system located in the intermountain area of the USA. Table 18.

				Capac	ity of W	astewate	r Treatm	Capacity of Wastewater Treatment Facility	Lity						
	0.05 mgd	på	0.1 mgd	p	0.5 mgd	pSq	1.0 mgd	pø	3.0 mgd	p9	5.0 mgd	P			
Operation or Process	Requir	Energy Requirements	End Requir	Energy Requirements	Ene Requir	Energy Requirements	Ener gy Requirement	Energy Requirements	Energy Requirements	rgy	Energy Requirements	rgy ments		Coments	
	Elec- tricity, kwh/yr	Fuel, Elec- Hillion tricity, Btu/yr kwh/yr	Elec- tricity, kwh/yr	Fuel, Hillion Btu/yr	Fuel, Elec- Hillion tricity, Btu/yr kwh/yr	Elec- Fuel, tricity, Hillion kwh/yr Btu/yr	Fuel, Elec- Hillion tricity, Btu/yr kwh/yr	-	Fuel, Elec- Hillion tricity, Btu/yr kwh/yr	Fuel, Hillion Btu/yr	Fuel, Elec- Hillion tricity, Btu/yr kwh/yr	Fuel, Hillion Btu/yr			
Wastewater Treatment Law Sewage Pumping Intermittent Sand Filter	1,200	2.5	2,280	•	10,200	8	19,400	8	53,900	151	86,700	252	TDH - 10 fc	10 ft	ĭ
Disinfection (Cl ₂) Primary Energy Secondary Energy	830		1,240		4,700		9,330		29,170		49,520 825 180,195				ĭĭ
Other Building Heating Building Cooling	661	31	77	Ξ	458	350	99	£ 43	1,228	745	1,726				34
Total for Treatment System	2,833	150	4,916	186	20,511	345	39,201	483	483 111,623	968	896 181,921	1,240			

Energy requirements for components of an advanced wastewater treatment system processing secondary effluent located in the intermomntain area of the USA. Table 19.

				Capac	ity of W	astevate	Capacity of Wastewater Treatment Pacility	ent Paci	litey					
Operation	0.05 mgd	po	0.1	0.1 mgd	0.5 mgd	p Sta	1.0 mgd	2	3.0 mgd	2	5.0 mgd	P.		
or Process	Requir	Energy lequirements	Reguir	Energy Requirements	Energy Requireme	Energy Requirements	Energy Requirements	TEV Energies	Ene Requir	Energy Requirements	Energy Requirements	rent.	Connents	.
	Elec- tricity, kwh/yr	Fuel, Elec- Million tricity, Btu/yr kwh/yr	Elec- tricity, kut/yr	Fuel, Elec- Million tricity, Btu/yr kwh/yr	1	Fuel, Elec- Million tricity, Btu/yr kwh/yr	Elec- tricity, kwh/yr	Fuel, Elec- Million tricity, Btu/yr kwh/yr	Elec- tricity, kwh/yr	Fuel, Million Btu/yr	Fuel, Elec- Hillion tricity, Btu/yr kwh/yr	Fuel, Million Btu/yr		
Secondary Effluent Treatment Chemical Clarification (Alum)														
Primary Energy	10,430		10,620		17,380		25,680		58,110		91,730			3-57
Necondary Energy Filtration	1,100		2,200		2,003		22,000		12,032		110,000		Cravity Filters	191
Adsorption	3.100		6.200		31.000		62.000		186.000		310.000		Unflow Expanded Red	Red 7-66
Regeneration	1,900	200	3,800	007	19,000	2,000	38,000	4.000		12,000	12,000 190,000	20,000		
Ion Exchange	1,100		2,200		11,000	•	22,000		96,000		110,000		Gravity	3-68
Primary Energy	100		200		1,000		2,000		6,000		10,000		Regeneration with 2%	
Secondary Energy	-		2		9		20		9		100		Naci	3-69
Primary Energy Secondary Energy	630		1,240		4,700		9,330		29,170		49,520		Dosage - 10 mg/1	3-74
Sub-Total	18,769	200	26,880	004	97,178	2,000	2,000 185,206	000'7	4,000 537,867	12,000-892,229	192,229	20,000		
Sludge Ireatment Air Flotation Thickening	15,030		26,470		107,360		195,480		070,000		794,080			7.
Hauling-Truck Landfill Disposal	2	0.3		0.6		25		2.0	060'01	150	087 '57	220		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Sub-Total	15,940	3	27,960	•	6 112,080	2	28 203,670	26	56 525,930	169	169 818, 360	282		
Other Building Meating Building Cooling	199	871	244	181	458	320	979	6133	1,228	745	1,726	88		7.83
Total for Treatment System	34,908	351	55,084	587	587 209,716	2,348	2,348 389,522	4,489 1	,065,025	4,489 1,065,025 12,914 1,712,315 21,270	. 72, 315	21,270		

Table 20. Energy requirements for components frequently appended to secondary wastewater treatment plants.

				Capac	ity of h	Capacity of Wastewater Treatment Facility	r Treatm	ent Faci	lity					
Operation	0.05 mgd	påu	0.1 mgd	pSu	0.5 mgd	påu	1.0 mgd	p8m	3.0 mgd	påu	S.ú mgd	p8e	Comments	
669001	En Requi	Energy Requirements	Ene Requir	Energy Requirements	Ene Requir	Energy Requirements	Energy Requirement	Energy Requirements	Energy Requirements	rgy	Ene Requir	Energy Requirements		
	Elec- tricity, kwh/yr	Fuel, Million Btu/yr	Fuel, Elec- Million cricity, Btu/yr kuh/yr	Fuel, Elec- Million cricity, Btu/yr kwh/yr		Fuel, Elec- Million cricity, Btu/yr kwh/yr	Elec- tricity, kwh/yr		Elec- tricity, kwh/yr	Fuel, Million Btu/yr	Fuel, Elec- Fuel, Million tricity, Million Btu/yr kwh/yr Btu/yr	Fuel, Militon Btu/yr		
Filtration-Gravity	1,100		2,200		11,000		22,000		96,000		110,000			163
Filtration-Pressure Intermittent Sand Filters and	1,500		3,030		15,390		31,000		060,99		157,510			ì
Slow Sand Filters	965	2.5		2	5.070	22	9.660	8	26.830	151	43,150	252		
Mcroscreens - 23u Screen	6,097		10,540		37,590		000,54		154,800		231,800			3-62
35u Screen	4,005		6,930		24,700		42,700		101,700		152,300			7,5
lor exchange	1,100		2,200		11,000		22,000		96,000		110,000		Gravity	3
Primary	100		200		000		2,000		9,000		10,000		Regeneration with	,
Secondary			2		10		20		9		81		77 NaC1	Î
Decklorination	74,460		78,650		98,760		114,600		156,200		186,600		Dechloringtion with	:
Mitrification-Suspended Growth	7,000		14,000		70,000		140,000		420,000		200,000		Mechanical Aeration	

system applicable to the treatment of small flows of wastewater. For combinations not shown in the tables, energy requirements can be calculated using the equations in Appendix A.

Carbon and Ion Exchange Regeneration

Energy requirements for the regeneration of carbon and ion exchange materials for very low flow systems (0.05 - 0.1 mgd) are shown in Tables 12, 19, and 20 only for comparative purposes. In most cases activated carbon would be replaced rather than regenerated and the energy requirements would be reduced accordingly. The regeneration of ion exchange resins would probably be justified, but depending upon local conditions it may be less expensive to replace ion exchange resins on a fixed schedule rather than to regenerate them.

Energy requirements for carbon regeneration represent greater than 10 percent of the electricity and 93 percent of the fuel consumed in the components of an advanced treatment system following secondary treatment at a flow rate of 5 mgd. At a flow rate of 0.05 mgd, the energy requirements for carbon regeneration have been reduced to 5 percent of the electricity and 57 percent of the fuel requirements. However, the inconvenience of operating additional equipment and the need for highly skilled operation would probably rule out the use of carbon regeneration at very small (< 0.5 mgd) wastewater treatment systems.

Gas Utilization

Although the energy required and produced by gas utilization is presented in the examples summarized in Tables 8, 9, and 10, gas utilization in small flow systems, particularly at the lower flow rates of less than 0.5 mgd, may not be advisable. The increased operating expense caused by the need for a more skilled operator and more sophisticated equipment will likely offset any savings from gas utilization. However, this is a decision that must be made on an individual basis.

Effluent Quality and Energy Requirements

Table 21 shows the expected effluent quality and the energy requirements for various combinations of the operations and processes shown in Figures 2 through 12 and Tables 8 through 20. Energy requirements and effluent quality are not directly related. Utilizing facultative lagoons and land application techniques, it is possible to obtain an excellent quality effluent and expend small quantities of energy. Although one system may be more energy efficient, the selection of a wastewater treatment facility must be based upon a complete economic analysis. However, with rising energy costs, energy requirements are assuming a greater proportion of the annual cost of operating a wastewater treatment facility, and it is likely that energy costs will

Table 21. Expected effluent quality and total energy requirements for various sizes and types of wastewater treatment plants located in the intermountain area of the USA.

	17	fluent	Effluent Quality				Tota	Total Energy Requirements at Various Flow Rates	lequi reme	te at Val	tous Flor	Pares .				
Treatment System			u u	0	0.05 mgd	0.1	1	0.5	1	1.0	,	3.0	,	5.0	,	
	\$000	SS PI	Phos. Mitrogas Pas Pas N	Elec- m tricity, keh/yr	Fuel. Million Btu/yr	Elec- tricity, but/yr	Fuel. Million Btu/yr	Elec- tricity.	Fuel. Militon Btu/yr	Elec- tricity, hab/yr	Fuel. Hillion Btu/yr	Elec- tricity.	Fuel, Hillion Btu/yr	Elec- tricity.	Feel. Hillion Res/yr	j
Trickling Filter with Amerobic Digestion	8	8		15,300	225	23,600	335	76,500	1,100	137,000	2,000	383,000	5,490	380,000	4.910	See Pigure 2
Sotating Stological Contactor with Amerobic	8	8		15,200	225	23,700	335	91,000	1,100	148,000	2,000	000'607	3,490	647,000	014.	See Pigure 3
Digestion of Microscreens 23st sective Fond + Microscreens 23st Physical-Chemical Advanced Secondary Treatment	22	82	. B	46,500	148	14,300	181	53,000	320	252,000	433	239,000	34,200	371,000		in Plans t
Activated Sludge With Anserobic Digestion	92	20		35,600	1 214	\$2,700	313	173,000	878	316,000	1,750	964,000	4,680	000'007'1 089'7	7,540	See Figure .
Activated Sludge with Sludge Incineration	20	92		008'67	302	67,400	***	192,000	1,880	337,000	3,540	985,000	10,100	10, 100 1, 10,000	18,68	Perentically Control
Extended heration with Sludge Drying Beds Trickling Filter + Granular Media Gravity Filtration.	22	100		37,000	191	58,100	335	218,000	, 100 100	416,000	2,000	1,200,000	1,5701	86.08	¥.5	Elect. See Figure 7
rickling Filter + M-Removal (Ion Exchange) + Gran, Media Filt.	. 20	01		17,600		28,200	335	99.500	1,100	183,000	2,000	801,000	3,480	810,000	0.910	
Facultative Pond + Intermittent Sand Filter		2	01	2,83					×	39.200	3		*	182,000	1,26	See Figure 1:
berated Pond + Intermittent Sand Filter	2 2	25	8 .	37.60					2 3	426.000	757		138	000 000	1,240	Can Plants
Artivated Sludge (A.D.) + Gran, Media Gravity Filt. Artivated Sludge + Mitrification + Gran, Media Gravity Filt.	22	0 0		43,700	216	54,900	22	184,000	55	138.000	32.1	350,000		310,000	3.5	
Overland Flow-Facultative Pond Plooding	•	•	5 3	2,700					320	38,700	(33		!	.e		See Figure 10
Rapid Infiltration-Facultative Pond Flooding	٠.		2 10	2,38					320	32,500	633		365	154,000		
Slow Rate (Irrigation)-rac. Fond-Kidge o furtor ricouring				20.500		200	200		2				9	3	8.	See Figure .

become the predominant factor in the selection of small flow treatment systems. Operation and maintenance requirements, and consequently costs, are frequently kept to a minimum at small installations because of the limited resources and operator skills normally available. This favors the selection of systems employing units with low energy requirements. It is very likely that all future wastewater treatment systems at small installations in isolated areas will be designed employing low energy consuming units and simple operation and maintenance. The only exceptions to this will be in areas with limited space or construction materials, or where surplus energy is available.

The effluent quality expected with each of the treatment systems and the energy requirements shown in Table 21 are presented in the order of decreasing BOD5 concentration in the effluent. The other parameters (suspended solids, Total P, and Total N) do not necessarily decrease in the same manner because most treatment facilities are designed to remove BOD5, but in general there is a trend in overall improvement in effluent quality as one reads down the table. As shown in Table 21, there are many systems available to produce an effluent that will satisfy EPA secondary or advanced effluent standards; however, energy requirements for the various systems are varied and can differ by a factor of greater than 10 to produce the same quality effluent.

For purposes of comparison the total energy (electricity plus fuel) for a typical 1 mgd system has been extracted from Table 21 and listed in Table 22 in order of increasing energy requirements. It is quite apparent from Table 22 that increasing energy expenditures do not necessarily produce increasing water quality benefits. The four systems at the top of the list, requiring the least energy, produce effluents comparable to the bottom four that require the most. Three of the top four are land treatment systems, and their adoption will depend on local site conditions. The facultative pond followed by intermittent sand filter and surface discharge to receiving waters is less constrained by local soil and groundwater conditions.

Conventional Versus Land Treatment

A comparison of the energy requirements for a conventional wastewater treatment system consisting of a trickling filter system followed by nitrogen removal, granular media filtration and disinfection with a facultative pond followed by overland flow and disinfection is shown in Figure 13. This comparison is made because of the approximately equivalent quality effluents produced by the two systems (Table 21). The relationships in Figure 13 clearly show that there are significant electricity and fuel savings with the land application system. Similar comparisons for modifications of the two systems can be made by referring to Tables 8, 17, and 20 and selecting combinations to produce equivalent effluents.

Figure 14 shows a comparison of the energy requirements for an activated sludge plant producing a nitrified effluent, followed by

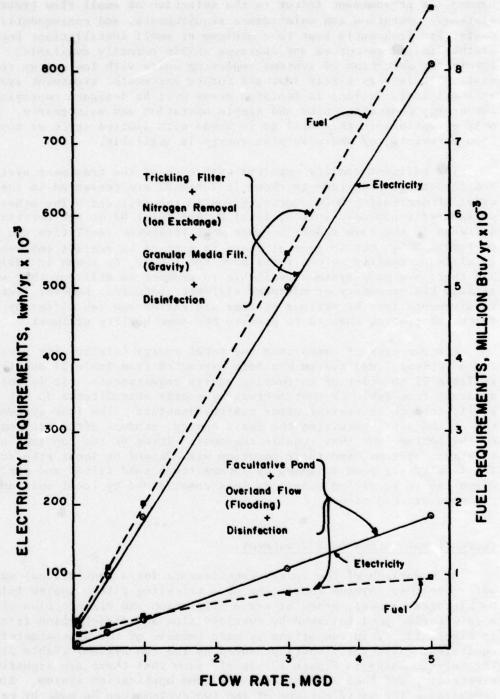


Figure 13. Comparison of energy requirements for trickling filter effluent treated for nitrogen removal and filtered versus facultative pond effluent followed by overland flow treatment.

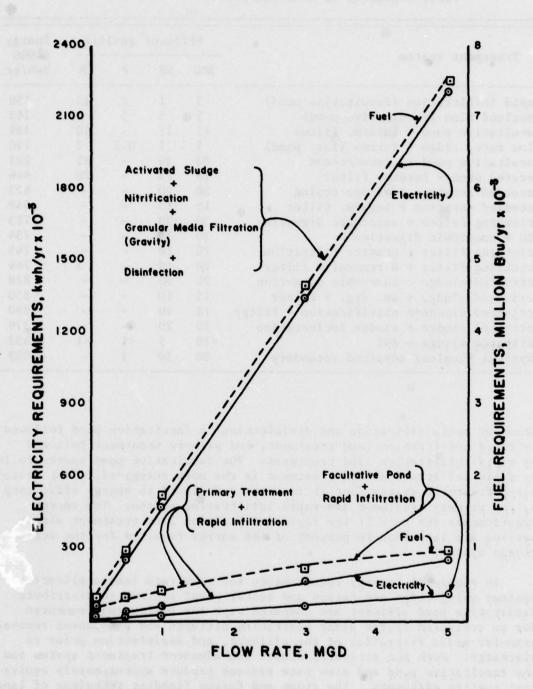


Figure 14. Comparison of energy requirements for activated sludge, nitrification, filtration and disinfection versus facultative pond effluent followed by rapid infiltration and primary treatment followed by rapid infiltration.

Table 22. Total annual energy for typical 1 mgd system (electrical plus fuel, expressed as 1000 kwh/yr).

7	Eff	luen	t qual	ity	Energy 1000
Treatment system	BOD	SS	P	N	kwh/yr
Rapid infiltration (facultative pond)	5	1	2	10	159
Overland flow (facultative pond)	5	5	5	. 3	165
Facultative pond + interm. filter	15	15	-	10	181
Slow rate, ridge + furrow (fac. pond)	1	1	0.1	3	190
Facultative pond + microscreens	30	30	-	15	221
Aerated pond + interm. filter	15	15	ATAM.	20	446
Extended aeration + sludge drying		20	-	-	623
Extended aeration + interm. filter	15	15	-	-	648
Trickling filter + anaerobic digestion	30	30	-	-	723
RBC + anaerobic digestion	30	30	-	-	734
Trickling filter + gravity filtration	20	10	-	-	745
Trickling filter + N removal + filter	20	10	-	5	769
Activated sludge + anaerobic digestion	20	20	-	-	828
Activated sludge + an. dig. + filter	15	10	-	-	850
Activated sludge + nitrification + filter	15	10	-	-	990
Activated sludge + sludge incineration	20	20	-	171	1,379
Activated sludge + AWT	<10	5	<1	<1	2,532
Physical chemical advanced secondary	30	10	1	-	4,029

granular media filtration and disinfection; a facultative pond followed by rapid infiltration land treatment, and primary treatment followed by rapid infiltration land treatment. The facultative pond system followed by rapid infiltration land treatment is the most energy-efficient wastewater treatment system, but it is closely followed in energy efficiency by the primary treatment and rapid infiltration system. The energy requirements for both of the rapid infiltration land treatment alternatives are less than 10 percent of the energy required for the activated sludge system.

In Figure 15, energy requirements for slow rate land application systems using ridge and furrow and center pivot systems to distribute facultative pond effluent are compared with the energy requirements for an activated sludge plant practicing nitrogen and phosphorus removal, granular media filtration of the effluent, and disinfection prior to discharge. Both the activated sludge and advanced treatment system and the facultative pond and slow rate systems produce approximately equivalent quality effluents. The ridge and furrow flooding technique of land treatment requires less than 10 percent of the energy required by the advanced treatment scheme. Utilizing a center pivot mechanism to distribute the facultative pond effluent increases the energy requirements by a

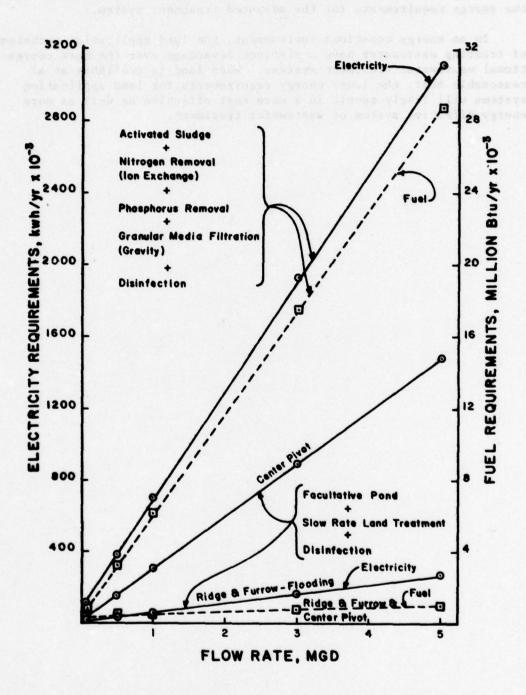


Figure 15. Comparison of energy requirements for secondary treatment followed by advanced treatment versus facultative pond effluent followed by slow rate land treatment.

factor of five compared with the ridge and furrow flooding technique, but the energy requirements for the center pivot system are less than one-half the energy requirements for the advanced treatment system.

In an energy conscious environment, the land application techniques of treating wastewater have a distinct advantage over the more conventional wastewater treatment systems. When land is available at a reasonable cost, the lower energy requirements for land application systems will likely result in a more cost effective as well as more energy effective system of wastewater treatment.

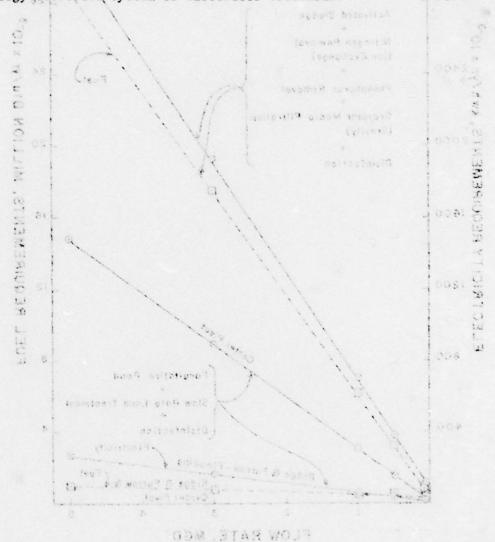


Figure 15. Gosparison of energy requirements for accordary treatment: followed by idvanced trustment versus facultative pond offinest lottowed by alow rate land treatment:

CONCLUSIONS

Based upon the results of the analyses presented in this report, the following conclusions are made.

- With increasing energy costs, energy consumption is assuming a greater proportion of the annual cost of operating wastewater treatment facilities of all sizes, and because of this trend, it is likely that energy costs will become the predominant factor in the selection of cost-effective small-flow wastewater treatment systems.
- Small-flow wastewater treatment systems are frequently designed to minimize operation and maintenance, and as energy costs increase, design engineers will tend to select low-energyconsuming systems.
- Low-energy consuming wastewater treatment systems are generally
 easier to operate and maintain than energy intensive systems,
 making the low-energy-consuming systems even more attractive
 because of the desire to minimize highly skilled operation at
 small facilities.
- 4. Where suitable land and groundwater conditions exist, a facultative pond followed by rapid infiltration is the most energy-efficient system described in this report.
- When surface discharge is necessary and impermeable soils exist, a facultative pond followed by overland flow is the second most energy-efficient system described in this report.
- Facultative ponds, followed by slow or intermittent sand filters, are the third most energy-efficient systems discussed, and are not limited by local soil or groundwater conditions.
- 7. Physical-chemical advanced secondary treatment systems utilize the most energy of the conventional methods of producing an effluent meeting the federal secondary effluent standard of 30 mg/l of BOD5 and suspended solids.
- 8. Slow rate land application systems following facultative ponds are more energy efficient than most forms of mechanical secondary treatment systems, while also providing benefits of nutrient removal, recovery and reuse.
- 9. Advanced physical-chemical treatment following conventional secondary treatment consumes approximately 13 times as much electrical energy and 26 times as much fuel as slow rate land treatment to produce an equivalent effluent.

- 10. Land application wastewater treatment systems following storage ponds (aerated or facultative), preliminary treatment (bar screens, comminutors, and grit removal), or primary treatment are by far the most energy-efficient systems capable of producing secondary effluent quality or better.
- 11. This study did not consider the energy requirements for production of all materials consumed in the treatment process, but it is not believed that inclusion of such factors would significantly change the relative ranking of the systems discussed. Such inclusion would rather make the differences between simple biological processes and mechanical systems even more dramatic.

8

APPENDIX A

EQUATIONS DESCRIBING ENERGY REQUIREMENTS

Figure Number From EPA 130/9-77-011	Operation, Process, and Equation Desgribing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
H-dyn brown	Raw Sewage Pumping (Constant Speed) Y = 197,000 x ^{0.93} TDH = 100 ft Y = 123,000 x ^{0.93} TDH = 60 ft Y = 61,100 x ^{0.93} TDH = 30 ft	Design Assumptions: Effeciencies for typical entrifugal pumps (varies with flo) Variable level wet well TDH is total dynamic head
ne entwik	Y = 19,400 x ^{0,93} TDH = 10 ft Y = 9,660 x ^{0,93} TDH = 5 ft Y = Electrical Energy Required, kwh/yr X = Flow, mgd	Type of Energy Required: Electrical
3-2	Raw Sewage Pumping (Variable Speed) Y = 69,000 X ^{0.94} TDH = 30 ft Y = 24,100 X ^{0.94} TDH = 10 ft Y = 10,800 X ^{0.96} TDH = 5 ft Y = Electrical Energy Required, kwh/yr X = Flow, mgd	Design Assumptions: Efficiencies for typical centrifugation pumps (varies with flow) Wound rotar variable speed Variable level wet well Type of Energy Required: Electrical
	Raw Sewage Pumping (Variable Speed) Y = 229,000 x ^{0.94} TDH = 100 ft Y = 152,000 x ^{0.95} TDH = 60 ft Y = Electrical Energy Required, kwh/yr X = Flow, mgd	Design Assumptions: Efficiencies for typical centrifugal pumps (varies with flow) Wound rotor variable speed Varible level wet well Type of Energy Required: Electrical
	Lime Sludge Pumping log Y = 3.4788 + 0.7475 (log X) + 0.1906 (log X) ² - 0.0101 (log X) ³ - Raw Sewage, Low Lime log Y = 3.4448 + 0.7273 (log X) + 0.1714 (log X) ² - 0.0515 (log X) ³ - Raw Sewage, High Lime log Y = 3.3983 + 0.7173 (log X) + 0.1872 (log X) ² - 0.0532 (log X) ³ - Secondary Effluent, Low Lime log Y = 3.4676 + 0.7619 (log X) + 7.1842 (log X) ² - 0.0614 (log X) ³ - Secondary Effluent, High Lime Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Design Assumptions: TDH 25 ft Operating Parameters: Sludge concentrations, secondary treatment, are 5% for low lime and 7.5% for high lime Sludge concentrations, tertiary treatment, are 3% for low lime and 4.5% for high lime Type of Energy Required: Electrical
3 Tr. 10 W	Alum Sludge Pumping Y 4,000 x ^{0.95} (Secondary Effluent) Y = 6,330 x ^{0.96} (Raw Sewage) Y = Electrical Energy Required, kwh/\r X = Plant Capacity, mgd	Water Quality: Influent (Secondary) (mg/1) (mg/1) (mg/1) Suspended Solids 250 30 Phosphate as P 11.0 1.0 Water Quality: Influent (Tertiary) (mg/1) (mg/1) Suspended Solids 30 10 Phosphate as P 11.0 1.0 Design Assumptions: TDH = 25 ft Sludge conventration (secondary)= 12
	A SECULAR TO A SECULAR SECU	Sludge concentration (tertiary)=0 57 Operating Parameter: Alum addition = 150 mg/l

[&]quot;See Wesner et al , 1978.

Figure Humber From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-4	Ferric Chloride Sludge Pumping log Y = 3.6192 + 0.8308 (log X) + 0.1364 (log X) ² - 0.0356 (log X) ³ - Secondary Effluent	Water Quality: Influent Effluent (Secondary) (mg/1) (mg/1) Suspended Solida 250 30 Phosphate as P 11.0 1.0
	log Y = 3.6051 + 0.8078 (log X) + 0.1301 (log X) ² - 0.0047 (log X) ³ - Rew Seunge Y = Electrical Energy Required, kwh/yr	Water Quality: Influent Effluent (Tertiary) (mg/1) (mg/1) Suspended Solida 30 10 Phosphate as P 11.0 1.0
	X - Plant Capacity, mgd	Design Assumptions: TDN = 25 ft Sludge concentration (secondary)= 23 Sludge concentration (tertiary)= 13
		Operating Parameters: Ferric Chloride addition = 85 mg/l Type of Energy Required: Electrical
3-7	Machanically Cleaned Screens log Y = 3.0803 + 0.1838 (log X) ~ 0.0467 (log X) ² + 0.0428 (log X) ³ Y = Electrical Energy Required, kwh/yr X = Flow, mgd	Design Assumptions: Normal run times are 10 min total time per hr except 0.1 mgd (5 min) and 100 mgd (15 min) Bar Spacing is 3/4 in Worm gear drive, SOX efficiency
	A CONTROL STATE DATE:	Type of Energy Required: Electrical
3-8	Comminutors log Y = 3.6704 + 0.3493 (log X) + 0.0437 (log X) ² + 0.0267 (log X) ³ Y = Electrical Energy Required, kwh/yr X = Flow, mgd	Type of Energy Required: Electrical
3-9	Grit Removal (Aerated) log Y = 4.1229 + 0.1582 (log X) + 0.1849 (log X) ² + 0.0927 (log X) ³	Water Quality: Removal of 90% of material with a apecific gravity of greater than 2.65
	Y - Electrical Energy Required, kwh/yr X - Plant Capacity, mgd	Design Assumptions: Grit removal to a holding facility by a screw pump Size based on a peaking factor of 2 Detention time is 3 min Tank design similar to that by Link-Belt, FMC Corp. or Jeffrey
		Operating Parameters: Air rate of 3 cfm per foot of length Removal equipment
		Type of Energy Required: Electrical
3-10	Grit Removal (non-Aerated) Y = 530 x ^{0.24} Y = Electrical Energy Required, kwh/yr	Water Quality: Removal of 90% of material with specific gravity greater than 2.65
	X - Plant Capacity, mgd	Design Assumptions: Grit removal to a holding facility by screw pump Size based on peaking factor of 2 Square tank Smallest volume is 117 on it Velocity of 0.55 fps through square tank or 1 min detention time at average flow Operate equipment 2 hr each day Type of Energy Required: Electrical
)-11	Pre-Acration log Y = 4.5195 + 0.7785 (log X) + 0.3618 (log X) ²	Design Assumption: Detention time is 20 min
	- 0.0496 (log X) ³ Y - Electrical Energy Required, kwh/yr X - Plant Capacity, mgd	Operating Parameter: Air supply is 0.15 cu ft/gal Type of Energy Required: Electrical

Figure Number: From EPA 130/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-12	Primary Sedimentation log Y = 3.8564 + 0.3781 (log X) + 0.1880 (log X) ² + 0.0213 (log X) ³ - Rectangular	Water Quality: Influent Effluent (mg/1) (mg/1) 8005 210 136 Suspended Solids 230 80
	log Y = 3.8339 + 0.3362 (log X) + 0.0148 (log X) ² + 0.0061 (log X) ³ - Circular Y = Electrical Energy Required, kwh/yr	Design Assumptions: Sludge pumping included Scum pumped by sludge pumps Hultiple tanks
	X - Plant Capacity, mgd	Operating Parameters: Loading = 1000 gpd/sq ft Waste rate = 65% of influent Solids, 5% concentration Pumps operate 10 minutes of each hr Type of Energy Required: Electrical
3-13	Secondary Sedimentation	Water Quality: Effluent
	log Y = 4.2149 + 0.6998 (log X) + 0.1184 (log X) ² - 0.0660 (log X) ³ - Activated Sludge log Y = 3.8591 + 0.3349 (log X) + 0.0735 (log X) ² + 0.0238 (log X) ³ - Trickling Filter	(mg/l) BOD ₅ Suspended Solids (applicable to activated sludge system effluent quality variable for trickling filter systems)
	Y - Electricity Required, kwh/yr X - Plant Capacity, mgd	Design Assumptions: Secondary sedimentation for conventional activated sludge includes return and waste activated sludge Secondary sedimentation for tricklin filter system includes waste sludge pumping Hydraulic loading = 600 gpd/sq ft
	A - other structures of the state of the sta	Operating Parameters: Waste activated sludge = 0.667 lb ss/lb BOD ₅ Return activated sludge = 50% Q Sludge concentration = 1% Waste pumps: operated 19 minutes each hour
10,750	ONLY - AND PARTITION OF THE PARTITION OF	Type of Energy Required: Electrical
3-14	Chemical Treatment Sedimentation Alum or Ferric Chloride log Y = 3.5364 + 0.0743 (log X) + 0.0290 (log X) ²	Design Assumptions: Coagulant: alum or ferric chloride
	- 0.0144 (log X) ³ Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Operating Parameter: Overflow rate = 700 gpd/sq ft Type of Energy Required: Electrical
3-15	Chemical Treatment Sedimentation Lime log Y = 3.5144 + 0.0172 (log X) + 0.0942 (log X) ² + 0.0905 (log X) ³	Design Assumptions: Coagulant: Lime Overflow rate, Avg = 1,000 gpd/sq ft Type of Energy Required: Electrical
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	
3-16	High Rate Trickling Filter (Rock Media) Y = 61,300 X 0.94	Water Quality: Influent Effluent (mg/1) (mg/1) BODs 136 45
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Suspended Solids 80 45 Design Assumptions: Hydraulic loading = 0.4 gpm/sq it including recirculation TDH = 10 ft Operating Parameter: Recirculation Ratio = 2:1

Figure Number From EPA 30/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-17	Low Rate Trickling Filter (Rock Media) Y = 93,600 x ^{0.94}	Water Quality: Influent Effluen (mg/1) (mg/1)
	Y - Electrical Energy Required, kwh/yr	BOD ₅ 136 30
	X - Plant Capacity, mgd	Suspended Solids 80 30 Design Assumptions: Hydraulic loading = 0.04 gpm/sq fr
		TDH = 23 ft Operating Parameter: No recirculation
3-18	Blob Base Parkhine Billion (Discoul)	Type of Energy Required: Electrical
Line Inecla	High Rate Trickling Filter (Plastic Media) Y = 161,000 x ^{0.95}	Water Quality: Influent Effluen (mg/1) (mg/1) BOD ₅ 136 35-45
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Suspended Solids 80 35-45 Design Assumptions:
	Andrea on a	Hydraulic loading = 1.0 gpm/sq ft including recirculation TDH = 40 ft
		Operating Parameter: Recirculation Ratio = 5:1 Type of Energy Required: Electrical
3-19	Super - High Rate Trickling Filter (Plastic Media)	Water Quality: Influent Effluen
	Y = 224,000 x ^{0.93}	(mg/1) (mg/1) BOD ₅ 136 82
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Suspended Solids 80 48 Design Assumptions: Hydraulic loading = 3 gpm/sq ft. including recirculation TDH = 40 ft
		Operating Parameter: Recirculation ratio = 2:1
3-20	Rotating Biological Disk	Type of Energy Required: Electrical Water Quality: Influent Effluen
J-10	Y = 110,000 X ^{1.02} - Standard Media	(mg/1) (mg/1)
	Y = 73,000 X ^{1,00} ~ Dense Media	BOD ₅ 136 30
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Suspended Solids 80 30 Design Assumptions: Hydraulic loading = 1 gpd/sq ft Standard media = 100,000 sq ft per unit
		Dense medis = 150,000 sq fr per uni Type of Energy Required: Electrical
3-21	Activated Biofilter Y = 210,000 x1.00	Water Quality: Influent Effluent (mg/1) (mg/1)
	Y - Electrical Energy Required, kwh/yr	800 ₅ 136 20 Suspended Solids 80 20
	X - Plant Capacity, mgd	Design Assumptions: Bio-cell loading = 200 lb BODs/1000
erata _{na} 600 erata yaki		cu ft Aeration = 1 lb 02/1b BOD5 Oxygen transfer efficiency in waste- water (mechanical aeration)
		- 1.8 1b O2/hp-hr Operating Parameters:
		Recirculation = 0.9:1 Recycle sludge = 50%
	20 Th	Type of Energy Required: Electrical
3-22	Brush Aeration (Oxidation Ditch) Y = 430,000 X ^{1.00}	Water Quality: Influent Effluent (mg/1) (mg/1) 80Dc 136 20
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Suspended Solids 80 20 Design Assumptions:
		Oxygen transfer efficiency = 1.8 lb O2/hp-hr (wire to water)
		Operating Parameter: Oxygen requirement = 1.5 lb 0 ₂ consumed/lb 80D5 removed + 4.6 lb 0 ₂ consumed/lb NH ₄ -N (in reactor
		feed) oxidized Type of Energy Required: Electrical

Pigure Number From RPA 430/9-77-011		cess, and Equation Describing. argy Requirements	Design Conditions Effluen	Assumpt Quality	ions and
3-23	Oxygen Activated S Cryogenic Oxyg	ludge - Uncovered Reactor With en Generation	Water Quality:	Influent (mg/1)	Effluent (mg/1)
	AND THE CONTRACT OF	Unstaged, plug flow 02 activated sludge and complete mix 02 activated sludge	BOD5 Suspended Solids Design Assumptions: Oxygen transfer e	136 80 fficiency	20 20 - 1.53 1b
		rgy Required, kwh/yr	O2/hp-hr (wire Rotating fine bubl dissolution Includes oxygen g Operating Parameter Oxygen requiremen consumed/lb BOD Type of Energy Requ	to water) ble diffuseneration : t = 1.1 15 removed	sers for
3-24		ludge - Covered Reactor Oxygen Generation	Water Quality:	Influent (mg/1)	Effluent (mg/1)
	Y = 170,000 x1.00		BOD ₅ Suspended Solids Design Assumptions:	136 80	20 20
	Y - Electrical Ene X - Plant Capacity	rgy Required, kwh/yr , mgd	Oxygen transfer e water = 2.07 lb water)	02/hp-hr	(wire to
			Surface aerators Includes oxygen g Operating Parameter Oxygen requiremen supplied/lb BOD Type of Energy Requ	eneration : t = 1.1 1 removed	02
3-25	Oxygen Activated S With PSA Oxyge	ludge - Covered Reactor	Water Quality:	Influent (mg/1)	Effluent (mg/1)
	Y - 230,000 x1.00		Suspended Solids	1 36 80	20 20
ACCEPTATION	Y = Electrical Ene X = Plant Capacity	rgy Required, kwh/yr , mgd	Design Assumptions: Oxygen transfer e water = [.53 lb water) Surface aerators Includes oxygen g Operating Parameter	02/hp-hr for dissoneneration	(wire to
All Assessed	raver (D. 12 II.) - m no po Ar aux + moved mar unaces and Fil		Oxygen Requiremen consumed/1b 80D5 Type of Energy Requ	removed	
3-26		Coarse Bubble Diffusion	Water Quality:	Influent (mg/1)	Effluent (mg/1)
	Y = 290,000 x1.00	Conventional activated aludge (complete mix)	Suspended Solids	136 80	20
	Y = 600,000 x ^{1.00} Y = 350,000 x ^{1.00}	Extended seration	Design Assumptions: Oxygen transfer e		
		Contact stabilization rgy Required, kwh/yr , mgd	water = 1.08 lb water, including Average value for diffusers	blower)	
a * julio segui a segui segui segui a segui segui a segui segui a segui segui a segui segui segui a segui segui segui segui a segui segui segui segui a segui segui segui segui segui segui a segui segui segui segui segui segui segui a segui segui segui segui segui segui segui segui a segui segui segui segui segui segui segui segui segui segui segui segui segu			Operating Parameters Conventional activation requirement = 1 consumed/lb BOD Extended aeration = 1.5 lb O2 conventions removed + 4.6 ll NHg_N (in react	vated sluc .0 1b 0 ₂ 5 removed oxygen resumed/1b 1 5 0 ₂ const	equirement BOD5 umed/lb
			Contact stabiliza ment = 1.1 lb 0 removed + 4.6 ll NH ₄ -N (in recyc during reaeration	consumed 0 02 consumed 1e sludge	1/1b BOD5 med/1b

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-27	Activated Sludge - Fine Bubble Diffusion	Water Quality: Influent Effluent
	Y = 230,000 x1.00 Conventional activated sludge (complete mix)	(mg/1) (mg/1) e BOD ₅ 136 20 Suspended Solids 80 20
	Y = 440,000 x1.00 Extended aeration	Design Assumptions:
	Y = 240,000 x1.00 Contact stabilization	Oxygen transfer efficiency in waste- water = 1.44 lb O ₂ /hp-hr (wire to
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	water, including blower) Average value for all types of diffusers
		Operating Parameters: Conventional activated sludge oxygen requirement = 1.0 lb 02 consumed/lb BOD5 removed Extended aeration oxygen requirement = 1.5 lb 02 consumed/lb BOD5 removed + 4.6 lb 02 consumed/lb DD5 removed + 4.6 lb 02 cons
a strategy	Philippe and the Control	during aeration Type of Energy Required: Electrical
3-28	Activated Sludge Treatment - Mechanical Aeration	
	Y = 160,000 x1.00 Conventional activated sludge (complete mix)	150 10
	Y = 350,000 X1.00 Extended seration	Suspended Solids 80 20 Design Assumptions:
	Y = 180,000 x1.00 Contact stabilization	Oxygen transfer efficiency = 1.8 lb
	Y = Electrical Energy Required, kwh/yr	O2/hp-hr (wire to water) Surface aerator, high speed
	X = Plant Capacity, mgd	Operating Parameters: Conventional activated sludge require ment = 1.0 lb O2 consumed/lb BOD5 removed
AN ANGEL OF THE SECOND	AND THE PROPERTY OF THE PROPER	Extended aeration oxygen requirement = 1.5 lb O ₂ consumed/lb BOD ₅ removed + 4.6 lb O ₂ consumed/lb NH ₄ -N (in reactor feed) oxidized Contact stabilization oxygen requirement = 1.1 lb O ₂ consumed/lb BOD ₅ removed + 4.6 lb O ₂ consumed/lb NH ₄ -N (in recycle sludge) oxidized during reaeration Type of Energy Required: Electrical
3-29	Activated Sludge - Turbine Sparger	Water Quality: Influent Effluent
	Y = 215,000 x ^{1.00} Conventional activated sludge (complete mix)	(mg/1) (mg/1) BOD ₅ 136 20 Suspended Solids 80 20
	Y = 430,000 x1.00 Extended aeration	Design Assumptions:
	Y = 250,000 X1.00 Contact stabilization	Oxygen transfer efficiency in waste- water = 1.6 lb O ₂ /hp-hr (wire to
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	water) Operating Parameters:
		Conventional activated sludge oxygen requirement = 1.0 lb O2 consumed/lb BOD5 removed Extended aeration oxygen requirement = 1.5 lb O2 consumed/lb BOD5 removed + 4.6 lb O2 consumed/lb BOD5 removed + 4.6 lb O2 consumed/lb NH4-N (in reactor feed) oxidized Contact stabilization oxygen requirement = 1.1 lb O2 consumed/lb BOD5 removed + 4.6 lb O2 consumed/lb NH4-N (in recycle sludge) oxidized during reservation Type of Energy Required: Electrical

Figure Number From EPA 430/9-77-011		s, and Equation Describing y Requirements		tions, Assumpt: fluent Quality	lons and
3-30	Activated Sludge -	Static Mixer	Water Quality:	Influent	Effluent
	Y - 250,000 x1.00	Conventional activated sludge (complete mix)	BODs Suspended Solids	(mg/1) 136 80	(mg/1) 20 20
	Y - 500,000 X1.00	Extended seration	Design Assumptions: Oxygen transfer ef		
	Y - 300,000 X1.00	Contact stabilization	02/hp-hr (wire to		
		rgy Required, kwh/yr es, mgd	Operating Parameters Conventional active quirement = 1.0	ated sludge oxy	
			Extended aeration 1b O2 consumed/1b		
			consumed/1b NH4-N-	N (in reactor f	eed) oxidize
			Contact stabilizat	ed/1b BODs remo	ved + 4.6
			1b 02 consumed/1 sludge) oxidized		
- Mary played	Loughest section to	on Application	Type of Energy Requi		
3-31	Activated Sludge - Y = 170,000 x1.00		Water Quality:	Influent (mg/l)	Effluent (mg/1)
	1 " 170,000 %	Conventional activated sludge (complete mix)	800 ₅	136 80	20
	Y - 340,000 x1.00	Extended aeration	Suspended Solids Design Assumptions:		20
	Y - 210,000 x1.00	Contact stabilisation	Oxygen transfer ef 1.8 1b O ₂ /hp-hr		
	Y - Electrical Ene X - Plant Capacity	rgy Required, kwh/yr , mgd	Operating Parameters Conventional activ	:	
			quirement = 1.0 removed		
			Extended meration of the last	BODs removed	+ 4.6 lb
			oxidized Contact stabilizat 1.1 1b O2 consum 1b O2 consumed/E sludge) oxidized	ion oxygen requed/1b BODs remote NH4-N (in reducing reacra	rirement = oved + 4.6 cycle
			Type of Energy Requi		
3-32	Aerated Ponds Y = 260,000 x1.0	0	Water Quality:	Influent (mg/1)	Effluent (mg/1)
	Y = 260,000 X		BOD5	210	25
	Y = Electrical Ene X = Plant Capacity	rgy Required, kwh/yr	Suspended Solids Design Assumptions:	230	25
			Low-apeed mechanic Motor efficiency =		itors
			Aerator efficiency to water)		-hr (wire
			3 cells - 1st cell Total detention ti		
			Operating Parameter: Oxygen requirement removed	- 1.0 1b 02/11	BOD5
			Type of Energy Requi	red: Electric	al
3-33	Nitrification - Su	spended Growth	Water Quality:	Influent (mg/1)	Effluent (mg/1)
	Y = 180,000 X1.00		Ammonia as N BODs	25 50	10
	Y - Electrical Ene X - Plant Capacity	rgy Required, kwh/yr , mgd	Design Assumptions: Mechanical aeratio efficiency = 1.8 water)	1b 02/hp-hr (1	vire to
			Use of lime has no energy requireme		mpact on
			Operating Parameter: Oxygen requirement		NHN

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-34	Nitrification, Fixed Film Reactor Y = 133,000 X ^{0.92} Recycle = 0.5:1 Y = 151,000 X ^{0.92} Recycle = 1:1 Y = 226,000 X ^{0.92} Recycle = 2:1 Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Water Quality: Influent Effluent (mg/l) (mg/l) Ammonia as N 25 2.5 BOD ₅ 50 10 Design Assumptions: No forced draft Plastic media Pumping TDH = 40 ft Type of Energy Required: Electrical
3-35	Denitrification - Suspended Growth (Overall) (Includes Methanol addition, reaction, sedimentation and sludge recycle) log Y = 5.0043 + 0.9495 (log X) + 0.0248 (log X) ² - 0.0332 (log X) ³ Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Water Quality: Influent Effluent (mg/l) (mg/l) NO3-N 25 0.5 Design Assumptions: Methanol - Nitrogen ratio 3:1 Remaining design assumptions and operating parameters are shown on the following curves in EPA 430/9-77-011 Denitrification Reactor, Figure 3-36 Reagration, Figure 3-37 Sedimentation and Sludge Recycle, Figure 3-38 Type of Energy Required: Electrical
3-36	Denitrification - Suspended Growth Reactor Y = 72,500 X ^{0.99} Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Design Assumptions: Temperature = 15°C Mitrate removal = 0.1 lb NO3-N/lb MLVSS/da; Mixing device, submerged turbines, hp = 0.1 hp/1000 cu ft Methanol addition is included Operating Parameter: MLVSS = 1500 mg/l Type of Energy Required: Electrical
3–37	Denitrification, Aerated Stabilization Reactor Y = 32,000 X ^{1.00} Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Design Assumptions: Detention time = 50 min Mechanical aeration = 1 hp/1000 cu ft Type of Energy Required: Electrical
3-38	Denitrification, Sedimentation and Sludge Recycle log Y = 4.1171 + 0.7596 (log X) + 0.1607 (log X) ² - 0.0389 (log X) ³ Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Design Assumptions: Surface loading = 700 gpd/sq ft Sludge recycle = 50% @ 15 ft TDH Type of Energy Required: Electrical
3-39	Denitrification - Fixed Film, Pressure log Y = 4.4238 + 0.8657 (log X) + 0.0840 (log X) ² + 0.0097 (log X) ³ Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Water Quality: Influent (mg/1) Nitrate as N 25 0.5 Design Assumptions: Sand media size = 2-4 mm Influent pumping TDH = 15 ft Loading rate = 1.7 gpm/sq ft Temp = 15°C Depth = 6 ft Operating Parameters: Backwash every 2 days for 15 min @ 25 gpm/sq ft and 25 ft TDM Methanol addition = 3.1 (CH ₃ OH:NO ₃ -N) Type of Energy Required: Electrical
3-40	Denitrification - Fixed Film, Cravity log Y = 3.9344 + 0.7310 (log X) + 0.1803 (log X) ² - 0.0453 (log X) ³ Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Water Quality: Influent Effluent (mg/1) (mg/1) Nitrate as N 25 0.5 Design Assumptions: Sand media size = 2-4 mm Depth = 6 ft Loading rate = 1.7 gpm/sq ft Temperature = 15°C Operating Parameters: Backwash 15 min/day @ 25 gpm/sq ft and 25 ft TDN Methanol addition = 3:1 (CH3OH:NO3-N) Type of Energy Required: Electrical

Figure Number From EPA 30/9-77-011	Operation, Process, and Equation Describing Energy Requirements		itions, Assum ffluent Quali	
3-41	Denitrification - Fixed Film, Upflow (Based on Experimental Data)	Water Quality:	Influent (mg/1)	Effluent (mg/1)
	$\log Y = 4.4935 + 0.8695 (\log X) + 0.0864 (\log X)^2$ - 0.0012 (log X) ³	Nitrate as N Design Assumption		0.5
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Sand media size Fluidized dept Influent pumpi	h = 12 ft ng TDH = 20 f	t .
		Temperature = Operating Parame Methanol addit Type of Energy Re	ters: ion = 3:1 (CH	
3-42	Single Stage Carbonaceous, Nitrification, and Denitrification Without Methanol Addition, Pulsed Air	Water Quality:	Influent (mg/1) 210	Effluent (mg/1) 20
	0.95	TKN	30	7.5
	Y - 391,000 x ^{0.95}	Temperature	15°C	
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	tion = 1.2 B removed) - 4 Mechanical aer Denitrification	for nitrifica OD ₅ removed + .6 (0.6 TKN a ation n mixing = 0.	
		and 50% slud	sedimentatio ge recycle	n @ 300 gpd/sqft
9.11		*Reference: Bis Journal, p. 520	hop, D.F., et	
3-43	Separate Stage Carbonaceous, Mitrification and Denitrification Without Mathanol Addition (Based on Experimental Data)	Water Quality: BOD ₅	Influent (mg/1) 210	Effluent (mg/1) 20
	Y = 413,000 x ^{0.98}	MH 3-N	30 15°C	7.5
		Temperature Operating Parame		
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Air supply for O2/1b BOD received Mechanical aerotransferred/	nitrification moved + 4.6 listion, 1.8 lb hp-hr n mixing = 0. on stage = 1 hr	b 0 ₂ /1b NH ₄ -N 0 ₂ 5 hp/1000 cu ft;
	The part of the pa		@ 700 gpd/sq	ft; 30% recycle ctrical
3-44	Single Stage Carbonaceous, Nitrification, and Denitrification Without Methanol Addition - Orbital Plants* (Based on Experimental Data)	Water Quality: BOD NH3-N	Influent (mg/1) 210 30	Effluent (mg/l) 15 4.5
	Y = 436,000 x ^{0.99}	Temperature	15°C	•
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	F/M ratio = 0. Rotor aeration	ditch detent 16	ion time = 8 hr ft; 50% recycle
	The second of th	Type of Energy Reference: Nate Austrian Plant Wastes Engr., p	equired: Ele sche, N.F. an Knocks Out Ni	etrical d Spatzierer, c. trogen, Water &
3-45	Lime Feeding Y = 6,700 X ^{0.75} Slaked lime, low lime Y = 11,000 X ^{0.75} Slaked lime, high lime Y = 7,600 X ^{0.81} Quicklime, low lime Y = 13,300 X ^{0.81} Quicklime, high lime	Design Assumption Slaked lime use plants Quicklime used Operating Paramel 300 mg/l, Low 600 mg/l, High Type of Energy R	for 0.1-5 t for 5-100 mg ters: Lime as Ca(OH Lime as Ca(O	d capacity plants
		300 mg/1, low 600 mg/1, High	Lime as Ca(OH Lime as Ca(O	H) 2

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-46	Alum Peeding log Y = 3.4969 + 0.2487 (log X) + 0.2711 (log X) ² + 0.1337 (log X) ³ Y = Electrical Energy Required, kwh/yr	Operating Parameters: Dosage - 150 mg/l as Al ₂ (SO ₄)3 - 14H ₂ O Type of Energy Required: Electrical
	X - Plant Capacity, mgd	
3-47	Ferric Chloride Feeding	Operating Parameter: Dosage - 85 mg/l as FeCl;
	log Y = 3.4586 + 0.3358 (log X) + 0.2082 (log X) ²	Type of Energy Required: Electrical
	+ 0.0053 (log X) ³	
	Y - Electrical Energy Required, kwh/yr X - Plant Capacity, mgd	
3-48	Sulfuric Acid Feeding	Operating Parameter:
	$\log Y = 3.1523 + 0.0204 (\log X) + 0.0270 (\log X)^2 + 0.0167 (\log X)^3$	Dosage = 450 mg/I (high lime system) Dosage = 225 mg/I (low lime system) Type of Energy Required: Electrical
	Y - Electrical Energy Required, kwh/yr X - Plant Capacity, mgd	
3-49	Solids Contact Clarification - High Lime, Two Stage Recarbonation (Includes reactor clarifier, high lime feeding, sludge pumping, two stage recarbonation) log Y = 5.1077 + 0.8739 (log X) + 0.1084 (log X) ²	This curve is valid for chemical treatment of both raw sewage and primary effluent. Water Quality: Influent Effluent (Treatment of Raw Sewage) (mg/1) (mg/1) Suspended Solids 250 10 Phosphate as P 11.0 1.0
	- 0.0549 (log X)3 - Liquid CO2	Water Quality: Influent Effluent
	Y - Electrical Energy Required, kwh/yr	(Treatment of Pri. Eff.) (mg/1) (mg/1) Suspended Solids 80 10.0
	X - Plant Capacity, mgd	Phosphate as P 11.0 1.0 Design Assumptions and Operating Parameters are shown on the following curves in EPA 430/9-77-011. Lime Feeding, Figure 3-45; Reactor Clarifier, 3-53; Sludge Pump- ing, 3-4; Recarbonation, 3-60, 3-61; Recarbonation Clarifier, 3-15 Type of Energy Required: Electrical
3-50	Solids Contact Clarification, High Lime, Sulfuric Acid Neutralization (Includes reactor clarifier, high lime feed, chemical sludge pumping, sulfuric acid	This curve is valid for chemical treatment of both primary and secondary effluents Water Quality: Influent Effluent (Treatment of Raw Sewage) (mg/1) (mg/1) Suspended Solids 250 10
	feed) $\log Y = 4.5932 + 0.6333 (\log X) + 0.2024 (\log X)^2$	Phosphate as P 11.0 1.0
	0.0208 (log x)	Water Quality: Influent Effluent (Treatment of Sec. Eff.) (mg/1) (mg/1)
	Y - Electrical Energy Required, kwh/yr	Suspended Solids 30 10
	X - Plant Capacity, mgd	Design Assumptions and Operating Parameters are shown on the following curves in EPA 430/9-77-011: Lime Feeding, Figure 3-45; Reactor Clarifier, 3-53; Sludge Pumping, 3-4;
		Sulfuric Acid Feeding, 3-48 Type of Energy Required: Electrical
3-51	Solids Contact Clarification Single Stage Low Lime With Sulfuric Acid Neutralization (Includes reactor clarifier, low lime feeding, sludge pumping, sulfuric acid feeding)	This curve is valid for chemical treatment of both raw sewage and primary effluents. Water Quality: Influent Effluent (Treatment of Raw Sewage) (mg/1) (mg/1) Suspended Solids 250 20
	$\log Y = 4.5447 + 0.6844 (\log X) + 0.1365 (\log X)^2$ - 0.0461 (log X) ³	Phosphate as P 11.0 2.0 Water Quality: Influent Efficient (Treatment of Pri. Eff.) (mg/1) (mg/1)
	Y - Electrical Energy Required, kwh/yr X - Plant Capacity, mgd	Suspended Solids 30 20 Phosphate as P 11.0 2.0 Design Assumptions and Operating Parameters are shown on the following curves in EPA
		430/9-77-011: Lime Feeding, Figure 3-45; Reactor Clarifier, 3-51; Sludge Pumping, 3-4; Sulfuric Acid Feeding, 3-48 Type of Energy Required: Electrical

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-52	Solids Contact Clarification, Alum or Ferric Chloride Addition (Includes chemical	This curve is valid for chemical treatment of both raw sewage and primary effluent)
	feeding, reactor clarifier, sludge pumping)	Water Quality: Influent Effluent (Treatment of Raw Sewage) (mg/1) (mg/1)
	log Y = 4.6237 + 0.6983 (Log X) + 0.1477 (log X)2	Suspended Solids 250 80
	- 0.0470 (log X) - Alum	Phosphate as P 11.0 1.0 Water Quality: Influent Effluent
	log Y = 4.5496 + 0.6894 (log X) + 0.1645 (log X) ²	(Treatment of Pri. Effl.) (mg/l) (mg/l) Suspended Solids 80 19
	- 0.0559 (log X) - Ferric Chloride	Phosphate as P 11.0 1.0
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Design Assumptions and Operating Parameters are shown on the following curves in EPA 430/9-77-011:
		Alum or Ferric Chloride Feeding, Figure 3-46, 3-47; Reactor Clarifier, 3-5; Sludge Pumping, 3-5, 3-6
		Type of Energy Required: Electrical
3-53	Reactor Clarifier	Operating Parameters:
	$\log Y = 4.3817 + 0.7223 (\log X) + 0.0947 (\log X)^2$	Separation zone overflow rate, lime - 1400 gpd/sq ft
	- 0.0027 (log X) ³	Separation zone overflow rate, alum or
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	ferric chloride = 1000 gpd/sq ft Type of Energy Required: Electrical
3-54	Separate Rapid Mixing, Flocculation, Sedimentation High Lime, Two Stage Recarbonation	This curve is valid for chemical treatment of both raw sewage and secondary effluent
	log Y = 5.0961 + 0.9484 (log X) + 0.1979 (log X) 2	Water Quality: Influent Efftuent (Treatment of Raw Sewage) (mg/l) (mg/l)
	- 0.0101 (log X) - Liquid CO,	Suspended Solids 250 10
	Y = Electrical Energy Required, kwh/yr	Phosphate as P 11.0 1.0 Water Quality: Influent Effluent
	X = Plant Capacity, mgd	(Treatment of Sec. Eff.) (mg/1) (mg/1)
		Suspended Solids 30 10.0
		Phosphate as P 11.0 1.0 Design Assumptions and Operating Parameters
		are shown on the following curves in EPA 430/9-77-011:
		Lime Feeding, Figure 3-45; Rapid Mixing,
		3-58; Flocculation, 3-59; Sedimentation, 3-15; Recarbonation, 3-60, 3-61; Sludge Pumping, 3-4
		Type of Energy Required: Electrical
3-55	Separate Rapid Mixing, Flocculation, Sedi-	This curve is valid for chemical treatment of
	mentation Single Stage High Lime,	both raw sewage and secondary effluent
	Neutralization With Sulfuric Acid	Water Quality: Influent Efficient (Treatment of Raw Sewage) (mg/1) (mg/1)
	$\log Y = 4.5919 + 0.6683 (\log X) + 0.1926 (\log X)^2$ - 0.0432 (log X) ³	Suspended Solids 250 10
	[- [- [- [- [- [- [- [- [- [-	Phosphate as P 11.0 1.0 Water Quality: Influent Effluent
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	(Treatment of Sec. Eff.) (mg/1) (mg/1)
		Suspended Solids 30 10 Phosphate as P 11.0 1.0
		Design Assumptions and Operating Parameters are shown on the following curves in EPA
		430/9-77-011:
		Line Feeding, Figure 3-45; Rapid Mixing, 3-58; Flocculation, 3-59; Sedimentation, 3-15; Sludge Pumping, 3-4; Sulturic Acid
		Feeding, 3-48
		Type of Energy Required: Electrical

Figure Number From EPA 30/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-62	Microscreens Y = 65,000 x ^{0.79} 23µ Screen	Water Quality: Influent Effluent (mg/1) (mg/1) (mg/1) 0 10
	Y = 42,700 x ^{0.79} 35µ Screen	Suspended Solids (23µ) 20 5
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Design Assumptions: Loading rate (35µ) = 10.0 gpm/sq ft Loading rate (23µ) = 6.7 gpm/sq ft Operating Parameters:
		80% submergence Type of Energy Required: Electrical Equation for 35µ screen applicable above 0 mgd. For flow rates <0.2 mgd energy
		requirements = 11,000 kwh/yr. Equation for 23µ screen applicable above 0. mgd. For flow rates <0.1 mgd energy requirements = 11,000 kwh/yr.
3-63	Pressure and Gravity Filtration Y = 31 ×1.01 Pressure Filters	Water Quality: Influent Effluen (mg/1) (mg/1)
	Y = 31 X ^{1.00} Pressure Filters Y = 22 X ^{1.00} Gravity Filters	Suspended Solids 20 10 Design Assumptions:
	Y = Electrical Energy Required, thousand kwh/yr X = Plant Capacity, mgd	Includes filter supply pumping (or allow- ance for loss of treatment system head) filter backwash supply pumping, and hydraulic surface wash pumping (rotating
	yanan mendadi an asalah sadi sebenasi seri Kalaman dan sebagai seri seri seri seri seri seri seri ser	arms) Pump Efficiency: 70%; motor efficiency: 93 Filter and back wash head: gravity filters 14 ft, TDH; pressure filters, 20 ft TDH
	The second secon	Surface wash pumping: 20 ft TDH Filtration rate (both filters): 5 gpm/sq ft Back wash rate (both filters): 18 gpm/sq ft
		Hydraulic surface wash rate (rotating arm) l gpm/sq ft (average) Operating Parameters: Filter run: 12 hrs. for gravity, 24 hrs.
	AND THE REAL PROPERTY AND THE PROPERTY A	for pressure Back wash pumping (both filters): 15 min. per back wash
		Surface wash pumping (both filters): 5 mi per back wash Type of Energy Required: Electrical
3-64	Granular Carbon Adsorption - Downflow Pressurized Contractor	Water Quality: Influent Effluent (mg/1) (mg/1) Suspended Solids 20 10
	Y = 74,000 X1.00	COD x 40 15
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Design Assumptions: 8 x 30 mesh carbon, 28 ft carbon depth, 3
		min. contact Filtration head: 28 ft TDH (carbon depth) + 9 ft. TDH, (piping and freeboard)
		Filtration pumping: 7 gpm/sq ft. 3 37 ft. TDH (average) Back wash pumping: 18 gpm/sq ft. 4 37 ft. TDH (average)
	- 10 (Color)	Operating Parameters: Operate to 20 ft. head loss building before backwashing
	Control of the Contro	Backwash pumping: 15 min per backwash Type of Energy Required: Electrical
3–65	Granular Carbon Adsorption - Downflow Gravity Contactor	Water Quality: Influent Effluent (mg/l) (mg/l)
	$Y = 31,000 \times 1.00$	Suspended Solids 20 10 COD 40 15
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Design Assumptions: 8 x 30 mesh carbon 3.5 gpm/sq ft 30 min contact (14 ft carbon depth) Operate to 6 ft headloss buildup before
		backwashing Type of Energy Required: Electrical

Ft /4 EPA 10/5-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-56	Separate Rapid Mixing, Flocculation,	This curve is valid for chemical treatment of
	Sedimentation Low Line, Neutralization	both raw sewage and secondary effluent
	With Sulfuric Acid	Water Quality: Influent Effluen
	- The state of the	(Treatment of Raw Sewage) (mg/1) (mg/1)
	log Y = 4.4521 + 0.7260 (log X) + 0.2292 (log X)	Suspended Solids 250 to
	- 0.0022 (log X)	Phosphate as P 11.0 1.0
	Y - Electrical Energy Required, kwh/yr	Water Quality Influent ff fuen
	X - Plant Capacity, mgd	(Treatment of Sec. Eff.) (mg/1) (mg/1)
		Suspended Solids 30 10
		Phosphate as P 11.0 1.0 Design Assumptions and Operating Parameters
		are shown on the following curves in EPA
		430/9-77-011:
		Rapid Mixing, Figure 3-58; Floculation,
		3-59; Sedimentation, 3-15; Lime feeding,
		3-45; Sulfuric Acid Feeding, 1-48;
		Chemical Sludge Pumping, 3-4
		Type of Energy Required: Electrical
3-57	Separate Rapid Mixing, Flocculation,	This curve is valid for chemical treatment a
	Sedimentation Alum or Ferric Chloride	both raw sewage and secondary effluent
	Addition	Water Quality: Influent Effluen
	$\log Y = 4.4096 + 0.6351 (\log X) + 0.2349 (\log X)^2$	(Treatment of Raw Sewage) (mg/1) (mg/1)
		Suspended Solids 250 10
	- 0.0169 (log X) - Alum	Phosphate as P 11.0 1.0
	log Y = 4.3395 + 0.6226 (log X) + 0.2215 (log X) ²	Water Quality: Influent Effluent
	- 0.0133 (log X) - Ferric Chloride	(Treatment of Sec. Eff.) (mg/1) (mg/1)
		Suspended Solids 30 10.0 Phosphate as P 11.0 1.0
	Y - Electrical Energy Required, kwh/yr	Design Assumptions and Operating Parameters
	X = Plant Capacity, mgd	are shown on the following curves in EPA 430/9-77-011:
		3-46 and 3-47; Rapid Mixing, 3-58; Flocculation, 3-59; Sedimentation, 3-14; Sludge Pumping, 3-5 and 3-6 Type of Energy Required: Electrical
3-58	Rapid Mixing	Design Assumptions:
	Y - 3,900 X ^{1.00}	Detention time = 30 seconds
	Y - 3,900 X	G = 600 sec-1
	Y = Electrical Energy Required, kwh/yr	Temperature = 15°C
	X - Plant Capacity, mgd	Coagulant: lime or alum or ferric chlorid
		Type of Energy Required: Electrical
3-59	Flocculation	Design Assumptions:
		Detention time = 30 minutes
	Y - 9,840 x ^{0.98}	G = 110 sec-1
	Y - Electrical Energy Required, kwh/yr	Temperature * 15°C
	X = Plant Capacity, mgd	Congulant: lime or alum or ferric chlorid
		Type of Energy Required: Electrical
3-60	Recarbonation - Solution Feed of Liquid CO2 Source	Design Assumptions:
	1.03	'Vaporizer = 25 lb CO ₂ /kwh
		Injector pumps = 42 gpm/1000 tb Co. 4 65 ps
	Y = 141,000 x1.03 High lime	Operating Parameters:
	Y - Electrical Energy Required, kwh/yr	Low Lime = 3000 1b CO2/mil gal
	X - Plant Capacity, mgd	High Line = 4500 th CO2/mil gal
		Type of Energy Required: Electrical
3-61	Recarbonation - Stack Gas as CO ₂ Source	Design Assumptions:
	Y = 50,000 X1.00 Low 11me	Stack Gas = 10% CO2, 0.116 16 CO2 on ft at
	1 00	standard conditions (60°F, 14.7 psia);
	Y = 170,000 X High lime	operating temperature, 110°F (tollowing
	Y - Electrical Energy Required, kwh/yr	scrubbing)
		Loss to atmosphere * 202
	X * Plant Capacity, mgd	Intaction programs - 4 and
	X * Plant Capacity, mgd	Injection pressure * 8 psi Operating Parameters:
	X 2 Plant Capacity, mgd	Operating Parameters:
	x 2 Plant Capacity, mgd	

Pigure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-66	Granular Carbon Adsorption - Upflow Expanded Bo Y = 62,000 x1.00	Mater Quality: Influent Effluent (mg/1) (mg/1) Suspended Solids 20 20
	Y = Electrical Energy Required, kwh/yr I = Plant Capacity, mgd	Design Assumptions: 30 minutes contact 12 x 40 mesh carbon 15% expansion, 7 gpm/sq ft (28 ft carbon depth) 3 ft freeboard Type of Energy Required: Electrical
3-67	Granular Activated Carbon Regeneration Y = 38,000 x ^{1.00} Clarified raw wastewater Electricity	Design Assumptions: Electricity includes furnace driver, after- burner, scrubber blowers and carbon conveyors
	Y = 4,000 x1.00 Clarified raw wastewater Fuel - million Btu/yr	Fuel required per lb Carbon regenerated: Furnace = 3,600 Btu
	Y = 10,000 X ^{1.00} Clarified secondary effluent Electricity	Steam = 1,600 Btu Afterburner = 2,400 Btu Operating Parameters:
	Y = 1,100 x1.00 Clarified secondary effluent Fuel - million Btu/yr	Carbon dose: Clarified raw wastewater, 1500 lb/mil gal Clarified secondary effluent,
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	400 lb/mil gal Type of Energy Required: Electrical and Fuel
3-68	Ion Exchange for Ammonia Removal, Gravity	Water Quality Influent Effluent (mg/l) (mg/l)
	Y = 310,000 X ^{1.00} Pressure	Suspended Solids 5 5 NHa-N 15 0.1-2
	Y = 220,000 X1.00 Gravity	NH ₃ -N 15 0.1-2 Design Assumptions:
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	150 bed volumes throughput/cycle 6 bed volumes/hr loading rate Gravity bed, available head = 7.25 ft Pressure bed, average operating head = 10 f Includes backwash but not regeneration nor regenerant renewal 10% downtime for regeneration Type of Energy Required: Electrical
3-69	Ion Exchange For Ammonia Removal - Regeneration Y = 2,000 x 1.00	n Design Assumptions: Regeneration with 2% NaCl 40 BV/regeneration; 1 regeneration/24 hrs
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Total head = 10 ft Does not include regenerant renewal Applicable to gravity or pressure beds Type of Energy Required: Electrical
3–70	Ion Exchange for Ammonia Removal ~ Regenerant Renewal by Air Stripping	Design Assumptions: Regenerant softened with NaOH, clarified at 800 gpd/sq ft
	Y = 120,000 x ^{1.00} with NH ₃ recovery Y = 65,000 x ^{1.00} without NH ₃ recovery	40 BV/regeneration cycle; 150 BV throughput per cycle Regenerant air stripped; tower loaded at 76
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	gpd/sq ft with 565 cu ft air/gal Stripping tower overall height = 32 ft Ammonia recovered in adsorption tower with H2504 Type of Energy Required: Electrical
3-71	Ion Exchange for Ammonia Removal, Regenerant Renewal by Steam Stripping	Design Assumptions: Steam stripping used Spent regenerant softened with soda 1sh at
	Y = 3,180 X1.04 Electricity	pH = 12
	Y = 6,150 X ^{1.03} Fuel-million Btu/yr Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Steam stripper height = 18 ft 4.5 BV/regeneration cycle; 150 BV throughput/ion exchange cycle Power includes softening, pH adjustment, pumping to stripping tower Fuel based on 15 lb steam required/1,000 gal wastewater treated NH, recovered

Figure Number From EPA 30/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-72	Ammonia Stripping	Water Quality: Influent Effluen
	Y = 82,200 X ^{1.01} Pumping.	pH 11 11 Air temp °F 70 70
	Y = 510,000 x1.01 Fans	Air temp., °F 70 70 NH ₃ -N, mg/1 15 3
	Y - 610,000 X1.01 Total	Design Assumptions: Pump TDH = 50 ft
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Operating Parameters: Hydraulic loading = 1.0 gpm/sq ft Air/Water ratio = 400 cu ft/gal Type of Energy Required: Electrical
3-73	Breakpoint Chlorination With Dechlorination	Water Quality: Influent Effluent
	$\log Y = 5.1429 + 0.3092 (\log X) + 0.1369 (\log X)^2$	(mg/1) (mg/1)
	+ 0.0458 (log X) Bechlorination with Activated Carbon	NH ₄ -N 15 0.1 Design Assumptions: Dosage ratio, Cl ₂ :NH ₄ -N is 8:1
	log Y = 5.0593 + 0.2396 (log X) + 0.0844 (log X) ²	Residual Cl2 = 3 mg/1
	+ 0.0084 (log X) Dechlorination with Sulfur Dioxide	Detention time in rapid mix = 1 min. Sulfur Dioxide feed ratio, SO ₂ :Cl ₂ = 1:3 Activated carbon pumping, TDH = 10 ft
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Type of Energy Required: Electrical
3-74	Chlorination and Dechlorination for Disinfection	Water Quality: Influent Effluen
	$\log Y = 4.0108 + 0.9289 (\log X) + 0.0868 (\log X)^2$	BOD ₅ , mg/1 20 20 Suspended Solids, mg/1 20 20
	+ 0.0065 (log X) Chlorination with Dechlorination	Suspended Solids, mg/1 20 20 Coliform, no./100 m1 >1000 200 Design Assumptions:
	$\log Y = 3.9698 + 1.0172 (\log X) + 0.0746 (\log X)^2$	Evaporator used for dosages greater than
	- 0.0658 (log X) Chlorination Without Dechlorination	2000 lb/day Dechlorination by SO ₂ assuming an SO ₂ :Cl ratio of 1:1 and SO ₂ :Cl ₂ residual of 1:
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	No evaporator for SO ₂ Operating Parameters: Chlorine dosage = 10 mg/1 Chlorine residual = 1 mg/1 Type of Energy Required: Electrical
3-75	Chlorine Dioxide Generation and Feeding	Design Assumptions:
	$\log Y = 3.4604 \div 0.3656 (\log X) + 0.2171 (\log X)^2$	Chlorine Dioxide dosage is 4 mg/l
	+ 0.0541 (log X) ³	(equivalent to 10 mg/1 Cl ₂) Sodium Chlorite: Chlorine Dioxide ratio
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	1.68 to 1 Chlorine: Chlorine Dioxide ratio = 1.68 Type of Energy Required: Electrical
3-76	Ozone Disinfection	Water Quality: Influent Effluer
	Y = 150,000 X1.00 Air Feed	Suspended Solids, mg/1 10 10
	Y = 57,000 X ^{1.00} Oxygen Feed	Fecal coliforms/100 ml 10,000 200 Design Assumptions:
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Ozone generated from air @ 1.0% wt. conce tration and oxygen @ 2.0% Operating Parameters:
100	AL SHEET STATE OF THE STATE OF	Ozone dose = 5 mg/l Type of Energy Required: Electrical
3-77	Ion Exchange for Demineralization, Gravity and Pressure	Water Quality: Influent Efflue (mg/l) (mg/l)
	Y = 90,000 x1.00 Gravity	TDS 500 50
	Y = 120,000 x ^{1.00} Pressure	Design Assumptions: Loading rate = 3 gpm/cu ft
	Y - Electrical Energy Required, kwh/yr X - Plant Capacity, mgd	Gravity bed, available head = 7.25 ft Pressure bed, average operating head 10 Includes backwash but not regeneration no regenerant disposal Type of Energy Required: Electrical

Figure Number From EPA 30/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Condition Effluen	s. Assumptions t Quality	and
3-78	Reverse Osmosis	Water Quality:	Influent	Effluent
	Y = 2,850,000 x ^{0.95}	PH Turbidity, JTU	<1.0	0.1
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	TDS, mg/l Design Assumptions: Feed pressure ~ 60 Single pass system Operating Parameters	500-1300 O pai	100-200
		Water recovery: 0	- 10 mgd 80%	
			0 - 100 mgd 85	x
		Type of Energy Requi	red: Electric	al
3-79	Land Treatment by Spray Irrigation (Modified)	Design Assumptions:	to a delay	
	Y - 270,000 X1.00 Center Pivot	Irrigation season		
	Y - 164,000 X1.00 Solid Set	Center pivot, TDH Solid set, TDH = 1		
	Y - Electrical Energy Required, kwh/yr	Type of Energy Requi	red: Electric	al
	X - Plant Capacity, mgd			
3-80	Land Treatment by Ridge and Furrow Irrigation and Flooding (Modified)	Design Assumptions: Irrigation season		
	Y = 20 X ^{1.00} Ridge and Furrow Fuel, million Btu/yr	Fuel for annual le furrow replacement	veling and ric	
	Y = 16,000 x1.00 Flooding Power	Type of Energy Requi		
	Y = 12,000 x1.00 Ridge and Furrow Power		Diesel F	uel
	Y - Electrical Energy Required, kwh/yr except for fuel X - Plant Capacity, mgd	reduce ordinally south a finite		
3-81	Infiltration/Percolation and Overland Flow by Flooding (Modified)	Design Assumptions: Infiltration/perco	olation, TDN -	5 ft
	Y = 9,200 X1.00 Overland Flow	Overland flow, TDE Disposal time is 2	50 days/yr for	Overland
	Y = 3,000 x1.02 Rapid Infiltration	Flow		
	Y - Electrical Energy Required, kwh/yr	Disposal time is :	sos days for Ka	ibra
	X - Plant Capacity, mgd	Type of Energy Requi	red: Electric	al
3-82	Infiltration/Percolation and Overland Flow by Solid Set Sprinklers (Modified)	Design Assumptions: Infiltration/perco	olation apray,	TDH - 115
	Y - 170,000 X1.00 Overland Flow	Overland flow spra		
	Y = 75,000 x1.00 Rapid Infiltration	Flow		
	Y = Electrical Energy Required, kwh/yr X = Plant Capacity, mgd	Diaposal time is : Infiltration Type of Energy Requi		
3-83	Wastewater Treatment Plant Building Heating Requirements	Design Assumptions: Four fresh air ch		
	log Y = 2.6362 + 0.4562 (log X) + 0.0795 (log X) ²	Storm windows and ceilings	insulated val	s and
	+ 0.0026 (log X) Minneapolis	70 percent fuel u		
	log Y = 2.4485 + 0.4498 (log X) + 0.0483 (log X)2	See Chapter 5, pages 430/9-77-011	5-2 to 5-7 i	n EPA
	- 0.0345 (log X) New York			
	log Y = 1.8742 + 0.4162 (log X) + 0.0732 (log X)2			
	~ 0.0118 (log X) Los Angeles			
	Y - Building Heating Requirements, million Btu/yr			
	X - Plant Capacity, mgd			

Energy Requirements	Effluent Quality
Wast water Treatment Plant Building Cooling Requirements log Y - 4.0520 + 0.5279 (log X) + 0.0856 (log X) ²	Note: See chapter 5, pages 5-8 to 5-10 in EPA 430/9-77-011
$log Y = 2.8103 + 0.5304 (log X) + 0.1114 (log X)^2$ - 0.0044 (log X) ³ Hinneapolis $log Y = 2.9050 + 0.5226 (log X) + 0.0692 (log X)^2$	
Y = Suilding Cooling Requirements, kwh/yr X = Plant Capacity, mgd	
Y = 6.72 x ^{0.95} Lime Sludge and Other Sludge for Thickener and <2,200 ft ²	See Table 3-4 in EPA 430/9-77-011 for design assumptions and operating parameters. Lime curve based on tertiary system at 60
Y = 174 x ^{0.53} Other Sludge from 2,200 to 9,000 ft ² of Thickener Area	lb/eq ft/day Type of Energy Required: Electrical
Y = 1.70 X ^{1.03} Other Sludge for Thickener Area >9,000 ft ²	
Y - Electrical Energy Required, kwh/hr X - Thickener Area, sq ft	
Air Flotation Thickening Y = 1,730 x 0.87 Y = Electrical Energy Required, kwh/yr	See Table 3-5 for design assumptions and operating parameters in EPA 430/9-77-011. Curve corresponds to a maximum air requirement of 0.2 lb/lb solids and average of 0.3 scfm air/sq ft surface area.
A - Surrace Area, aq tt	Type of Energy Required: Electrical
Backet Centrifuge Y = 1,070 x ^{0.72} <800 ft ³ /day or dewatered solids Y = 160 x ^{1.00} >800 ft ³ /day of dewatered solids Y = Electrical Energy Required, kwh/yr X = Dewatered Solids Capacity, cu ft/day	Design Assumptions: Operating hp is .375 times rated hp See Table 3-6 for specific alwage characteristics in EPA 430/9-77-011. Multiple units required above 800 cu ft/day capacity Operating Parameters: Machines run for 20 min. are off for 10 min. allowed for unloading, restarting and attaining running speed. Type of Energy Required: Electrical
Elutriation Y = 1,660 x ^{0.94} Digested Primary Y = 3,100 x ^{0.97} Digested Primary + Waste Activated Sludge and Digested Primary + Waste Activated Sludges with FeCl ₃	Sludge 1. Digested primary @ 8% solids 2. Digested primary + W.A.S. @ 4% solids 3. Digested primary + W.A.S. (+ FeCl ₃) @ 4% solids Design Assumptions: Overflow rates = 800 gpd/sq ft for 1
Y = Electrical Energy Required, kwh/yr X = Sludge Quantity, ton/day (dry solids)	500 gpd/aq ft for 2 4 3 Mixing energy: G = 200 sec-1 for 5 min. per stage TDN = 30 ft for sludge and 25 ft for water Operating Parameters: Two - stage, countercurrent system with separate mixing and settling tanks Wash water to sludge ratio = 4:1 Type of Energy Required: Electrical
Neat Treatment log v - 1.5710 + 0.3158 (log X) + 0.1754 (log X) + 0.0914 (log X) Low Oxidation (Air Addition) log v = 1.1801 + 0.1952 (log X) + 2.2864 (log X) + 0.2512 (log X)	Design Assumptions: Reactor conditions - 300 psig at 350°F Heat exchanger AT - 50°F Continuous operation See Table 3-9 for sludge description and text in Chapter 5 in EPA 430/9-77-011 Curve includes: Pressurization pumps Sludge grinders Post-thickener drives Boiler feed pumps
	Requirementa log Y - 4.0520 + 0.5279 (log X) + 0.0856 (log X) ² - 0.0168 (log X) ³ Miami log Y = 2.8103 + 0.5304 (log X) + 0.1114 (log X) ² - 0.0044 (log X) ³ Minneapolis log Y = 2.9050 + 0.5226 (log X) + 0.0692 (log X) ² - 0.0325 (log X) ³ New York Y = Suilding Cooling Requirements, kwh/yr X = Plant Capacity, mgd Gravity Thickening Y = 6.72 X ^{0.95} Lime Sludge and Other Sludge for Thickener and <2,200 ft ² Y = 174 X ^{0.53} Other Sludge from 2,200 to 9,000 ft ² of Thickener Area Y = 1.70 X ^{1.03} Other Sludge for Thickener Area y = 1.70 x ^{1.03} Other Sludge for Thickener Area y = 1.70 x ^{0.52} Other Sludge for Thickener Area y = 1.70 x ^{0.07} Y = Electrical Energy Required, kwh/hr A Thickener Area, og ft Banket Centrifuge Y = 1,070 x ^{0.72} <800 ft ³ /day of dewatered solids Y = 160 X ^{1.00} >800 ft ³ /day of dewatered solids Y = Electrical Energy Required, kwh/yr X = Dewatered Solids Capacity, cu ft/day Elutriation Y = 1,660 X ^{0.94} Digested Primary Y = 3,100 X ^{0.94} Digested Primary + Waste Activated Sludge and Digested Primary + Waste Activated Sludges with FeCl ₃ Y = Electrical Energy Required, kwh/yr X = Sludge Quantity, ton/day (dry solids) Heat Treatment log y - 1.5710 + 0.3158 (log X) + 0.1754 (log X) ³ + 0.0914 (log X) ³ Low Oxidation (Air Addition) log Y = 1.1801 + 0.1952 (log X) + 2.2864 (log X) ⁴ + 0.2512 (log X) ³ Thermal Conditioning (Mo Air)

Figure Number From EPA 30/9-/7-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-90	Heat Treatment - Without Air Addition Y = 500 x1.00 Y = Fuel Required, million Btu/yr X = Thermal Treatment Capacity, gpm	Design Assumptions: Reactor conditions - 300 psig at 350°F Heat exchanger AT - 50°F Continuous operation See Table 5-9 for sludge description and text of Chapter 5 in EPA 430/9-77-01; Curve includes: Fuel to produce steam necessary to raise reactor contents to operating temperatur Type of Energy Required: Fuel
3-91	Heat Treatment - With Air Addition Y = 260 X ^{1.00} Y = 320 X ^{1.00} Y = 370 X ^{1.00} W.A.S. Primary + W.A.S. Primary (+ FeCl ₃) + W.A.S. and Primary + W.A.S. (+FeCl ₃) Y = 420 X ^{1.00} Tertiary Alum Y = Fuel Required, million Btu/yr X = Thermal Treatment Capacity, gpm	Design Assumptions: Reactor conditions - 300 psig at 350°F Heat exchanger ΔT = 50°F Continuous operation See Table 5-9 for sludge description and text of Chapter 5 in EPA 430/9-77-011 Curve includes: Fuel to produce steam necessary to raise reactor contents to operating temperatur Type of Energy Required: Fuel
3-92	Heat Treatment - With Air Addition Y = 280 x ^{1.00} Y = 310 x ^{1.00} Y = 360 x ^{1.00} Dig. Primary Y = 360 x ^{1.00} Orig. Primary + W.A.S. and Primary + W.A.S. (+FeCl ₃) Y = 400 x ^{1.00} Dig. Primary + W.A.S. (+FeCl ₃) Y = Fuel Required, million Btu/yr X = Thermal Treatment Capacity, gpm	Design Assumptions: Reactor conditions - 300 psig at 150°F Heat exchanger AT = 50°F Continuous operation See Table 5-9 for sludge description and text of Chapter 5 in EPA 430/9-77-011 Curve includes: Fuel to produce steam necessary to raise reactor contents to operating temperatur Type of Energy Required: Fuel
3-9 1	Chemical Addition (Digested Sludges) log Y = 3.6422 + 0.3834 (log X) + 0.2290 (log X) ² Digested Primarv log Y = 3.5314 + 0.3664 (log X) + 0.2808 (log X) ² 0.1057 (log X) ³ Digested Primary + Waste Activated and Digested Primary + Waste Activated with FeCl ₃ Y = Electrical Energy, kwh/yr X = Sludge Quantity, ton/day (dry solids)	Design Assumptions: See Table 3-8 preceding Figure 1-96 for chemical quantities in EPA 430/9-77-011 Pumping head = 10 ft TDH Curves include: Chemical feeding and handling Sludge pumping Sludge-chemical mixing Type of Energy Required: Electrical
3-94	Chemical Addition (Undigested Sludges) log Y = 3.5641 + 0.3108 (log X) + 0.7344 (log X) ² + 0.0007 (log X) ³ Waste Activated log Y = 3.5174 + 0.2951 (log X) + 0.3228 (log X) ² - 0.1381 (log X) ³ Primary + Waste Activated log Y = 3.4817 + 0.2803 (log X) + 0.2350 (log X) ² + 0.0292 (log X) ³ Primary Y = Electrical Energy, kwh/yr X = Sludge Quantity, ton/day (dry solids)	Design Assumptions: Pumping head = 10 ft TDH Curves Include: Chemical feeding and handling Sludge pumping Sludge-chemical mixing Type of Energy Required: Electrical
3-95	Vacuum Filtration log Y = 4.1245 + 0.0840 (log X) + 0.2186 (log X) ² - 0.0177 (log X) ³ Y = Electrical Energy Required, kwh/yr X = Vacuum Filtration Area, sq ft	See Table 3-7 for design assumptions in EPA 430/9-77-011 Operating Parameters: 2 scfm/sq ft 20-22 inches Hg vacuum Filtrate pump, 50 ft TDH Curve includes: drum drive, discharge roller, vat agitator, vacuum pump, filtrate pump Type of Energy Required: Electrical

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-96	Filter Pressing Y = 6,980 x 0.58 Influent solids = 8X Y = 7,810 x 0.60 Influent solids = 6X Y = 6,710 x 0.71 Influent solids = 4X Y = Electrical Energy Required, kwh/yr X = Filter Press Volume, cu ft	See Table 3-8 for design assumptions in EPA 'A30/9-77-011 Operating Parameters: Power consumption based on continuous operation, 225 psi operating pressure Curve includes: Feed Pump (hydraulically driven, positive displacement piston pump) Opening and closing mechanism Type of Energy Required: Electrical
3-97	Centrifuging Y = 4,000 x 1.00 Lime sludge classification Y = 1,940 x 1.02 Dewatering Y = Electrical Energy Required, kwh/yr X = Flow, gpm	Operating Conditions: Power consumption based on continuous operation Dewatering accomplished with low speed centrifuge, G = 700 sec Sludge Type Primary + Low Lime Tertiary + Low Lime Primary + 2 Stage High Lime Tertiary + 3 Stage High Lime Tertiary + 4 Stage High Lime Tertiary + 2 Stage High Lime Tertiary + 2 Stage High Lime Tertiary + 2 Stage High Lime Tertiary + 3 Stage High Lime Tertiary + 4 Stage High Lime Tertiary + 4 Stage High Lime Tertiary + 4 Stage High Lime Tertiary + 5 Stage High Lime Tertia
3-98	Sand Drying Beds log Y = 2.1785 +0.9543(log X) + 0.0285 (log X) ² + 0.0020 (log X) ³ Power Consumption Y = 4.0 X ^{1.02} Fuel Consumption @ 7.5X solids pumped, million Btu/yr Y = 2.1 X ^{1.02} Fuel Consumption @ 5.0X solids pumped, million Btu/yr Y = 1.2 X ^{1.00} Fuel Consumption @ 2.5X solids pumped, million Btu/yr Y = 0.42 X ^{1.00} Fuel Consumption @ 1.0X solids pumped, million Btu/yr Y = Fuel Required, million Btu/yr X = Sludge Quantity, gpm	Design Assumptions: Power consumption based on pumping to drying beds at TDH = 15 ft Fuel consumption based on: drying to 50% solids, 70 lbs/cu ft loading with front end loader, 8 gal/hr use of diesel fuel (140,000 Btu/gal) 15 minutes required to load 30 cu yd truck See Table 3-3 for quantitles of various sludges/mil gal treated in EPA 430/9-77-011 Type of Energy Required: Electrical and Fuel
3-99	Sludge Pumping log Y = 2.6558 + 1.4926 (log X) - 0.2455 (log X) ² + 0.0065 (log X) ³ Y = Electrical Energy Required, kwh/yr per mile X = Annual Sludge Volume, mil gal	Design Assumptions: 4% solids maximum (Dilute to 4% if greater) 4 inch pipeline minimum, design velocity 3 fps Pipeline effective "c" factor 85 Pumping based on centrifugal non-clog or slurry pumps, 68% efficiency 20 hours per day average operation Operating Parameters: See Table 3-9 for sludge characteristics for disposal in EPA 430/9-77-011 Type of Energy Required: Electrical
3-100	Dewatered Sludge Haul by Truck Y = 7.0 X ^{1.00} Truck Capacity = 10 yd ³ Y = 4.6 X ^{1.00} Truck Capacity = 15 yd ³ Y = 2.6 X ^{1.00} Truck Capacity = 30 yd ³ Y = Fuel Required, million Btu/one way mile/yr X = Annual Sludge Volume, 1,000 cu yd	Design Assumptions: 1 gal diesel (#2) = 140,000 Btu Diesel powered dump trucks Operating Parameters: Operation 8 hr per day Average speed; 25 mph for first 20 miles and 35 mph thereafter Truck fuel ume 4.5 mpg avg See Table 3-9 for sludge characteristics for disposal in EPA 430/9-77-011 Type of Energy Required: #2 Diesel (ue)

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-101	Liquid Sludge Hauling by Barge Y = 5.6 X ^{0.97} Barge Capacity = 2 MG Y = 11.0 X ^{0.97} Barge Capacity = 1 MG Y = 12.0 X ^{0.97} Barge Capacity = 0.85 MG Y = 14.7 X ^{0.97} Barge Capacity = 0.5 MG Y = 26.9 X ^{0.97} Barge Capacity = 0.3 MG Y = Fuel Required, million Btu/one way mile/yr X = Annual.Sludge Volume, 1,000 cu yd	Design Assumptions: I gal marine diesel = 140,000 Btu Non-propelled barges moved with tugs Operating Parameters: Operating 24 hrs per day Average speed 4 mph Tug size: 300,000 gal barge-1,200 hp 500,000 & 850,000 gal barge- 2,000 hp 1,000,000 & 2,000,000 gal barge- 2,500 hp See Table 3-9 for sludge characteristics for disposal in EPA 430/9-77-011 Type of Energy Required: Marine diesel fuel
3-102	Liquid Sludge Hauling by Truck Y = 14.9 X ^{0.98} Truck Capacity = 5,500 gallons Y = 25.3 X ^{1.01} Truck Capacity = 2,500 gallons Y = 53.2 X ^{1.02} Truck Capacity = 1,200 gallons Y = Fuel Required, million Btu/one way mile/yr X = Annual Sludge Volume, mil gal	Design Assumptions: 1 gal diesel (#2) = 140,000 Btu Diesel powered tank trucks Operating Parameters: Operating 8 hrs per day Average speed; 25 mph for first 20 miles and 35 mph thereafter Truck fuel use 4.5 mpg avg See Table 3-9 for sludge characteristics for disposal in EPA 430/9-77-011 Type of Energy Required: #2 Diesel fuel
3-103	Utilization of Liquid Sludge Y = 180 X ^{1.00} Land spreading Y = Fuel Required, million Btu/yr X = Annual Sludge Volume, mil gal	Design Assumptions: Fuel use: spreading truck - 2 gal/trip 1 gal diesel (#2) = 140,000 Operating Parameters: 1600 gal big wheel type spreader, 15 minute round trip. Truck is self loading See Table 3-9 for sludge characteristics for disposal in EPA 430/9-77-011 Type of Energy Required: #2 Diesel fuel
3-104	Utilization of Dewatered Sludge Y = 18 X ^{1.00} Landfill Y = 71 X ^{1.00} Land Spreading Y = Fuel Required, million Btu/yr X = Annual Sludge Volume, 1,000 cu yd	Design Assumptions: Fuel use: Bulldozer - 8 gal/hr Front end loader - 8 gal/hr Spreading truck - 3 gal/trip l gal diesel (#2) = 140,000 Btu Operating Parameter: Landfill: 30 minutes bulldozer time per 30 cu yd truckload of sludge Spreading: 7.2 cu yd big wheel type spreader, 20 minute trip time See Table 3-9 for sludge characteristics for disposal in EPA 430/9-77-017 Type of Energy Required: #2 Diesel fuel
3-105	Hixing ~ Anaerobic Digester - High Rate Y = 1.8 X ^{1.00} Mechanical Mixing - 1/4 HP/1000 ft ³ Y = 3.3 X ^{1.00} Mechanical Mixing - 1/2 HP/1000 ft ³ Y = 6.8 X ^{1.00} Mechanical Mixing - 1 HP/1000 ft ³ log Y = 3.8094 + 0.1464 (log X) - 0.0721 (log X) ² + 0.0209 (log X) ³ Gas Mixing - 5 scfm/1000 ft ³ log Y = 12.6028 - 6.3342 (log X) + 1.5075 (log X) ² - 0.1036 (log X) ³ Gas Mixing - 10 scfm/1000 ft ³ log Y = 6.3722 - 1.9562 (log X) + 0.5249 (log X) ² - 0.0301 (log X) ³ Gas Mixing - 20 scfm/1000 ft ³ Y = Electrical Energy Required, kwh/yr X = Digester Volume, cu ft	Design Assumptions: Continuous operation 20 ft submergence for release of gas Motor efficiency varies from 85% to 93% depending on motor size Type of Energy Required: Electrical See Chapter 5, pages 5-11 to 5-14 and Figure 3-106 for fuel requirements in EPA 430/9-77-011

Figure Number From EPA 30/9-77-011		cess, and Equation Describing ergy Requirements	Design Conditions, Assumptions and Effluent Quality
3-106	Thermophilic Ana	erobic Digestion	Design Assumptions:
	1.00	Primary + High Lime Sludge	Fuel requirements are shown for northern
	1 00	Primary + (W.A.S. + FeCia)	states, for central locations multiply by 0.5 for southern locations multiply by 0.
	y = 0.9 x1.00	Primary + FeCl ₃ , Primary + W.A.S., and (Primary + FeCl ₃) + W.A.S.	Operating Parameter: Digester temperature 103°F
	1.01	Primary, and Primary + Low Lime	See Figure 3-105 for mixing energy in EPA 430/9-77-011
	1 01	Waste Activated Sludge	See Table 3-3 for sludge characteristics in EPA 430/9-77~011
	Y - Fuel Require X - Solids, 1b/d	d, million Btu/yr	Type of Energy Required: Fuel or Natural Gas
3-107	Aerobic Digestio	a lineage and a second	Design Assumptions:
		echanical Aeration - Detention ime = 8 days	Energy based on oxygen supply requirements; mixing assumed to be satisfied Mechanical aeration based on 1.5 lb 02
	1	echanical Aeration - Detention ime = 16 days	transfer/hp-hr Diffused aeration based on 0.9 1b 02
		echanical Aeration - Detention lime = 24 days	transfer/hp-hr Temperature of waste = 20°C Oxygen for nitrification is not included in
		Diffused Air - Detention Time	values presented - for nitrification 02 demand + BOD demand multiply value from
		Diffused Air - Detention Time	curve by 1.3 Type of Energy Required: Electrical
		Diffused Air - Detention Time 24 days	
	Y = Electrical E X = BOD _{IN} - 1b/d	nergy Required, kwh/yr	
3-108	Thermophilic Aer		Design Assumptions:
	Y = 125 X1.00 2	200 1b BOD 1000 ft 3/day	Process is autothermophilic Pure oxygen provided for oxygen transfer
	y = 157 x1.02	00 1b BOD / 1000 ft 3/day	having the following power demands:
	Y = Electrical E X = BOD _{IN} - 1b/d	nergy Required, kwh/yr ay	1.5 hp/1,000 cu ft mixing 2.9 lb 02/hp-hr PSA generation 4.2 lb 09/hp-hr Cryogenic generation Cryogenic systems assumed for greater demands than 5 ton/day Type of Energy Required: Electrical
3-109	Chlorine Stabili	zation of Sludge	Design Assumptions: Operating pressure = 35 psi
	$Y = 2,190 \times 0.96$		Recirculation ratio = 5:1
	Y = Electrical E X = Sludge Flow,	nergy Required, kwh/yr	Chlorine feed = 4 lbs/1,000 gal Type of Energy Required: Electrical
3-110	Lime Stabilizati	on of Sludges	Design Assumptions:
	Y = 7.50 x ^{0.72}	Lime Dosage = 200 lb/ton as Ca(OH) ₂	Pumped feed of slaked lime Mix lime and sludge for 60 seconds at G = 600 sec ⁻¹
	Y = 12.25 X ^{0.70}	Lime Dosage = 400 lb/ton as Ca(OH) ₂	Sludge pumping not included (see Figure 3-6 in EPA 430/9-77-011 if pumping required) Type of Energy Required: Electrical
	Y = 17.97 x ^{0.70}	Lime Dosage = 800 lb/ton as Ca(OH) ₂	Survival agents of 1919-5-1
	Y = 30.71 X ^{0.68}	Lime Dosage = 1,000 lb/ton as Ca(OH) ₂	
a supposer or are settle to		nergy Required, kwh/yr ity, lb dry solids/day	to the first term of the second
3-111	Figure 3-1 Start-up F	Furnace Incineration (See 12 in EPA 430/9-77-011 for (uel)	See Table 3-10 for design assumptions in EPA 430/9-77-011 Operating Parameters:
	Y = 14.00 X1.00	Primary Sludge	Incoming sludge temperature is 57 F Combustion temperature is 1400 F
	Y = 16.00 X1.00	Primary + Low Lime Sludge	Downtown for cool-down equals start-up time
	Y = 22.30 x1.00	Digested Primary Sludge	Frequency of start-ups is a function of individual systems
	1 - 22.30 X		Excess air is 100%
	Y = 40.00 x1.00	Primary + (W.A.S. + FeCl ₃) Sludge	
	Y = 40.00 x ^{1.00} Y = 60.00 x ^{1.00}	Primary + (W.A.S. + FeCl ₃) Sludge (Primary + FeCl ₃) + W.A.S., and W.A.S.	Type of Energy Required: Fuel Oil or Natural Gas
	Y = 40.00 x1.00	(Primary + FeCl ₃) + W.A.S., (Primary + FeCl ₃) + W.A.S., and	Type of Energy Required: Fuel Oil or Natural Gas

Figure Number From EPA 30/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Condit	ions, As uent Qua		nd
3-112	Multiple Hearth Furnace Incineration Start-Up Fuel	Design Assumption Use in conjunct 430/9-77-011	tion wit		
	Y - 0.00194 X	required.			
	Y - Fuel Required, million Btu/hr	Heatup time:	Effectiv		Heatup
	X - Effective Hearth Area, sq ft	1997 + Steady	Ar		Time hr
			less t	han 400	18
		of the property		-800	27
				-1400	36
				-2000	54
		0		than 2000	108
		Operating Assump Heatup time to Frequency of s	reach 1		
		individual s			
20 M 2 1	SECTION AND A TOMORDON WITH THE CONTRACTOR OF TH	Type of Energy R	lequired:	Fuel Cil	or Natura
3-113	Multiple Hearth Furnace Incineration	Design Assumption		ding Rates,	lb/hr/sq
	Y = 3870 x ^{0.74}	Concentration,		(wet slu	
	Y = Electrical Energy Required, kwh/yr		Sma Plan		Large
	X - Effective Hearth Area, sq ft			mgd	Plants >25 mgd
		14-17	6.		10.0
	THE RESIDENCE STORY S. LEWIS CO., MICH.	18-22	6.	5	11.0
		23-30	7.		12.0
		31	8.	0	12.0
		Operating Parame System operate		f the time.	
3-114	Fluidized Bed Furnace Incineration	Design Assumption	ns:		
	Y = 10.3 X1.00 Primary Sludge, Rate - 14 lb/ft 2/hr	Heat value of	volatile	solids is	10,000
	Y = 12.5 x ^{1.00} Primary + Low Lime Sludge,	Btu/1b			
	Rate - 18 1b/ft ² /hr	See Table 3-10 more design 011.			
	Y = 15.6 X ^{1.01} Digested Primary Sludge, Rate - 14 1b/ft ² /hr	Operating Condition tem		is 1400°F	
	Y = 31.0 X ^{1.00} Primary + (W.A.S. + FeCl ₃), Rate - 8.4 lb/ft ² /hr	Downtime is a 40% excess air Startup not in	, no pre	heater	
	Y = 45.0 x ^{1.00} Primary + W.A.S., (Primary + FeCl ₃) + W.A.S., and W.A.S., Rate - 6.8 lb/ft ² /hr	startup Type of Energy R Gas			
	Y = 51.0 $\chi^{1.00}$ Primary + FeCl ₃ and W.A.S. + FeCl ₃ , Rate = 6.8 1b/ft ² /hr	Assume the L			
	Y = Fuel Required, million Btu/yr X = Dry Sludge Feed, lb/hr				
3-115	Fluidized Bed Furnace Incineration Y = 47,400 x ^{0.93}	See Table 3-10 p	ions in		
	Y = Electrical Energy Required, kwh/yr	Operating Parame Full time oper			
	X = Bed Area, sq ft	Type of Energy R		Electrica	1
3-116	Sludge Drying	Design Assumption			
	Y = 10 X1.0 Fuel 30% Input Solids Concentration,	Continuous ope Dryer Efficien			
	million Btu/yr Y = 16.5 X ^{1.0} Fuel 20% Input Solids Concentration,	Product moistu Power includes	re conte		veyors
	million Btu/yr Y = 200 X ^{1.0} Electricity 30% Input Solids	Type of Energy F	lequired,	Fuel and E	lectricit
	Y = 234 X ^{1.02} Electricity 20% Input Solids				
	Concentration Y = 32.4 X ^{1.02} Fuel 8% Input Solids Concentration, million Btu/yr				
	Y = 277 X1.01 Electricity 8% Input Solids				
	Concentration				
	Concentration Y = 71.0 X ^{1.01} Fuel 4% Input Solids Concentration, million Btu/yr Y = 1154 X ^{1.02} Electricity 4% Input Solids				

Figure Number From EPA 30/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
3-116 (Continued)	Y = 150 X ^{1.00} Fuel 2% Input Solids Concentration, million Btu/yr	Supple from the control of the contr
	Y = 2650 X ^{1.00} Electricity 2% Input Solids Concentration	
	Y = 300 X ^{1.00} Fuel 1% Input Solids Concentration, million Btu/yr	
	Y = 5100 X1.00 Electricity 1% Input Solids Concentration	
	Y - Electrical Energy Required, kwh/yr except	
	fuel required X = Annuel Dry Solids Product, ton/yr	
3-117	Wet Air Oxidation	Design Assumptions: Reactor pressure
	log Y = 2.2518 + 0.6392 (log X) + 0.1259 (log X) ² - 0.0108 (log X) ³ Primary + W.A.S.	Primary + W.A.S. = 1700 paig W.A.S. = 1800 paig
	log Y = 2.1561 + 0.5493 (log X) + 0.1772 (log X) ²	Continuous operation See Table 5-9 for sludge description and
	- 0.0205 (log X) 3 W.A.S.	text in Chapter 5 in EPA 430/9-77-011 Curve Includes:
	Y - Electricity Required, thousands kwh/yr X - Treatment Capacity, gpm	Pressurization pumps Sludge grinders Decant tank drives Type of Energy Required: Electrical Moze: Fuel is required only at start-up
3-118	Lime Recalcining - Multiple Hearth Furnace	Design Assumptions:
	Y = 1544 R ^{0.51} Fuel-Primary, 2 stage high lime, million Bru/yr	Continuous operation Multiple hearth furnace 7 lbs/sq ft/hr loading rate (wet basis)
	Y = 2094 X ^{0.51} Fuel - Tertiary, low lime, million Btu/yr	Gas outlet temperature = 900°F Product outlet temperature = 1400°F Power includes center shaft drive, shaft
	Y = 2290 X ^{0.51} Fuel - Tertiary, 2 stage high lime, million Btu/yr	cooling fan, burner turboblowers, produc cooler, and induced draft fan
	Y = 18,650 x ^{0.48} Power, kwh/yr	Sludge Composition: CaCO ₃ Mg(OH) ₂ Other Com-
	Y - Electrical Energy Required, kwh/hr X - Hearth Area, sq ft	Composition: 2 Inerts bustible Primary, 2 stage high
		lime 65% 2% 13% 20% Tertiary, low
		lime 71 10 16 3 Tertiary, 2
		stage high lime 86.1 4.3 6.1 3.5
		Type of Energy Required: Fuel and Electrica
4-1	Activated Carbon Secondary Energy Requirements	
	Y = 1.05 X1.00 400 lb/mil gal Tertiary granular Carbon treatment, million Stu	
	Y = 17.5 x1.00 2,500 lb/mil gal, IPC Powered Carbon treatment, million Btu	
	Y - Production Energy, million Btu X - Plant Capacity, mgd	
4-3	Ammonium Hydroxide Secondary Energy Requirements	
	Y = 73 x1.04 4,175 lb/mil gal, million Btu	
	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	

-

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Design Conditions, Assumptions and Energy Requirements Effluent Quality
4-4	Carbon Dioxide Secondary Energy Requirements
	Y = 1.5 x ^{1.0} 200 mg/l, million Btu
	Y = 3.2 x1.0 300 mg/1, million Btu
	Y - Production Energy, million Btu X - Plant Capacity, mgd
4-5	Chlorine Secondary Energy Requirements
	Y = 165 x ^{1.00} 10 mg/1, kwh
	Y - 1800 X ^{1.00} 135 mg/1, kwh
9	Y - Production Energy, kwh X - Plant Capacity, mgd
4-6	Ferric Chloride Secondary Energy Requirements
	Y - 200 x ^{1.00} 50 mg/1, kwh
	Y - 700 x1.00 200 mg/1, kwh
	Y - Production Energy, kwh X - Plant Capacity, mgd
4-7	Lime (Calcium Oxide) Secondary Energy Requirements
	Y = 6.2 x1.0 300 mg/1, million Btu
	Y = 8.3 x1.0 400 mg/1, million Btu
	Y - Production Energy, million Btu X - Plant Capacity, mgd
4-8	Methanol Secondary Energy Requirements
	Y = 7.9 x1.0 60 mg/1, million Btu
	Y = Production Energy, million Btu X = Plant Capacity, mgd
4-9	Oxygen Secondary Energy Requirements
	Y = 345 X ^{1.0} 200 mg/1, kwh
	Y = Production Energy, kwh X = Plant Capacity, mgd
4-10	Polymer Secondary Energy Requirements
	Y = 1950 X ^{1.0} , 1.4 #/mil. gal., Btu
	Y - Production Energy, Btu X - Plant Capacity, mgd
4-11	Sodium Chloride Secondary Energy Requirements
	Y = 25 X1.0 Rock and Solar, 1200 1b/mil. gal.
	Y = 20 X ^{1.0} Evaporated, 1200 lb/mil. gal.
	Y - Production Energy, kwh X - Plant Capacity, mgd
4-12	Sodium Hydroxide Secondary Energy Requirements
	Y = 550 X ^{1.0} 375 1b/m11. gal., kwh
	Y = 7100 x ^{1.0} 4760 lb/mil. gal., kwh
	Y = Production Energy, kwh X = Plant Capacity, mgd
4-13	Sulfur Dioxide Secondary Energy Requirements Y = 0.35 X ^{1.0} 2 mg/l, kwh
	Y = Production Energy, kwh X = Plant Capacity, mgd
4-14	Sulfuric Acid Secondary Energy Requirements
	Y = 1500 x1.0 250 mg/l, million Btu
	Y = 2600 x1.0 450 mg/l, million Btu
	Y - Production Energy, million Btu
	X = Plant Capacity, mgd

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
5-1	Estimated Heat Requirements 1000 sq ft building	CANAL BY MICES AND INCOME.
	Y = 1.7000 + 31.7402 X - 0.7765 X ² Case A: Uninsulated	
	Y = 0.3000 + 17,1750 X - 0.3750 X ² Case B: Added Wall and Ceiling Insulation With Storm Windows	
	Y = 0.0491 + 12.3386 X - 0.2538 X ² Case C: Wall and Ceiling Insulation Double Glazed Windows and Floor Insulation	
	Y - Heat Required, million Btu/yr X - Thousand, deg day/yr	late i Pro-Albaniani et i grani et in samari et
5-2	Estimated Floor Area for Wastewater Treatment Plants	F SAFE IN MISSION MADE SHOW THE PARTY OF THE
	$\log Y = 3.1801 + 0.1789 (\log X) + 0.4170 (\log X)^2$	
	- 0.1074 (log X) Total Floor Area	
	log Y = 2.8073 + 0.4146 (log X) + 0.1857 (log X) 2	
	- 0.0332 (log X) Laboratory and Administrative Area	
	Y = Floor Area, sq ft X = Plant Capacity, mgd	
5-3	Anaerobic Digester Heat Requirements For Primary Sludge	
	Y = 3.20 - 0.0290 X South U.S Digestion Temp. = 95°F	
	Y = 3.43 - 0.0293 X Middle U.S Digestion Temp. = 95°F	
	Y = 4.03 - 0.0300 X North U.S Digestion Temp. = 95°F	
	Y = Digester Heat Required, million Btu/mgd (0.05 lb VS/day/cu ft) X = Sludge Temperature to Digester, OF	
5-4	Anaerobic Digester Heat Requirements for Primary Plus Waste Activated Sludge	
	Y = 6.69 - 0.063 X South U.S Digester Loading = 0.05 lb VS/ft 3-day	
	Y = 7.14 - 0.063 X Middle U.S Digester Loading = 0.05 lb VS/ft ³ -day	
	Y = 8.42 - 0.064 X North U.S Digester Loading = 0.05 lb VS/ft ³ -day	
	Y = 6.11 - 0.062 X South U.S Digester Loading = 0.15 1b VS/ft 3-day	
	Y = 6.28 - 0.062 X Middle U.S Digester Loading = 0.15 lb VS/ft ³ -day	
	Y = 6.67 - 0.062 X North U.S Digester Loading = 0.15 lb VS/ft 3-day	
	Y = Digester Heat Required, million Btu/mgd X = Sludge Temperature to Digester, OF	
5-5	Heat Requirements Powered Activated Carbon Regeneration	
	y = 0.0233 x ^{0.88}	
	Y = Fuel Required, million Btu/yr X = Powered Activated Carbon Regenerated, lb/day	

Figure Number From EPA 0/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
5-7	Digester Gas Cleaning and Storage Construction Costs	property and was an expense.
	log Y = 0.9701 + 0.8379 (log X) - 0.1235 (log X)	
	+ 0.0218 (log X) Total Clean Compress and Store	
	log Y = 3.1972 - 1.7054 (log X) + 0.6770 (log X) 2	
	- 0.0642 (log X) Clean and Compress	
	log Y = -0.8547 + 1.7752 (log X) - 0.3705 (log X) 2	
	+ 0.0521 (log X) Store	
	Y ~ Construction Cost, thousand dollars X ~ Digester Gas Cleaned and Compressed, scfm	
5-8	Digester Gas Cleaning and Storage 0 6 M Labor Requirements	
	log Y = 0.2605 + 1.3030 (log X) + 0.0195 (log X) ²	
	- 0.0247 (log X) ³	
	Y = 0 & M Labor, hr/yr	
	X - Digester Gas Cleaned and Stored, scfm	
5-9	Digester Gas Cleaning and Storage Maintenance Material Costs	
	$\log Y = -1.6763 + 0.9018 (\log X) + 0.2707 (\log X)^2$	
	- 0.0653 (log X) ³	
	Y = Maintenance Material, thousand dollars/yr X = Digester Gas Cleaned and Stored, scfm	
5-10	Digester Gas Cleaning and Storage Energy Requirement	s
	$\log Y = 1.1149 + 0.4622 (\log X) + 0.0753 (\log X)^2$	
	+ 0.0024 (log X) ³	
	Y = Electricity Required, thousand kwh/yr X = Digester Gas Cleaned and Stored, scfm	
5-11	Internal Combustion Engine Construction Costs	600 rpm engine with heat recovery and
	$\log Y = 5.2829 - 3.6573 (\log X) + 1.3169 (\log X)^2$	alternate fuel system
	- 0.1250 (log X) ³	
	Y = Construction Cost, thousand dollars X = IC Engine, hp	100 mark - 100 m 100 m
5-12	Internal Combustion Engine O & M Labor Requirements	600 rpm engine with heat recovery and alternate fuel system
	$\log Y = -1.1725 + 1.5611 (\log X) - 0.0273 (\log X)^2$	
	- 0.0146 (log X) ³	
	Y = 0 & M Labor, hr/yr	
	X = IC Engine, hp	
5-13	Internal Combustion Engine Maintenance Material Costs	600 rpm engine with heat recovery and alternate fuel system
	$\log Y = -5.4676 + 4.3514 (\log X) - 1.1752 (\log X)^2$	
	$+ 0.1337 (log X)^3$	
	Y = Maintenance Material, thousand dollars/yr X = IC Engine, hp	
5-14	Internal Combustion Engine Alternate Fuel Requirements	600 rpm engine with heat recovery and alternate fuel system
	log Y = -1.9249 + 3.5577 (log X) - 0.7592 (log X)2	
	+ 0.0736 (log X) ³	

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Efficient Quality		
5-15	Digester Gas Utilization System Construction Costs	Complete electricity generation system as shown in Figure 5-6 EPA 430/9-77-011		
	$\log Y = 2.5404 - 0.4530 (\log X) + 0.6979 (\log X)^2$ - 0.1318 (log X) ³			
	Y = Construction Cost, thousand dollars X = Plant Capacity, mgd	Armed a model to a superior		
5-16	Digester Gas Utilization System O&H Labor Requirements	Complete system for electricity generation as shown in Figure 5-6 EPA 430/9-77-011		
	$\log x = 1.8795 + 1.1374 (\log x) - 0.1063 (\log x)^2 + 0.0029 (\log x)^3$			
	Y = 06 M Labor, hr/yr X = Plant Capacity, mgd			
5-17	Digester Gas Utilization System Maintenance Material Costs	Complete system for electricity generation as shown in Figure 5-6 EPA 430/9-77-011		
	$\log Y = 4.1712 - 8.2581 (\log X) + 6.1717 (\log X)^2 - 1.3289 (\log X)^3$			
	Y = Maintenance Material, thousand dollars/yr X = Plant Capacity, mgd			
5-18	Digester Gas Utilization System Energy Requirements	Complete system for electrical generation as shown in Figure 5-6 EPA 430/9-77-011		
	log Y = 2,4984 + 0.9564 (log X) - 0.0985 (log X) ² + 0.0411 (log X) ³ Fuel			
	log Y = 1.7189 + 0.5938 (log X) - 0.0424 (log X) ² + 0.0068 (log X) ³ Electricity			
	Y - Fuel Required, million Btu/yr X - Plant Capacity, mgd			
5-19	Multiple Hearth Incineration Construction Cost log Y = 0.0606 + 0.5432 (log X) + 0.4666 (log X) ² - 0.1592 (log X) ³	Design and Operation Assumptions: Loading rate = 6 lb/sq ft/hr Sludge: Primary + W.A.S. sludge = 162 solids		
	Y = Construction Cost, million dollars X = Plant Capacity, mgd			
5-20	Hultiple Hearth Incineration 0 6 H Requirements Y = 1600 x ^{0.65}	Design and Operation Assumptions: Loading rate = 6 lb/sq ft/hr Sludge: Primary + W.A.S. sludge = 16%		
	Y = 06 N Labor, hr/yr X = Plant Capacity, mgd	aolids		
5-21	Multiple Hearth Incineration Maintenance	Design and Operation Assumptions: Loading rate = 6 lb/sq Ft/hr Sludge: Primary + W.A.S. sludge = 162 molids		
	Y = Maintenance Material, dollars/yr X = Plant Capacity, mgd			
5-22	Auxiliary Heat Required to Sustain Combustion of Sludge	Assumptions: 10,000 Btu/1b VS		
	Y = 4.09 - 0.165 X Primary, 60% VS Y = 4 - 0.179 X Primary + W.A.S., 69% VS			
	Y - Heat Required, million Btu/ton VS X - Sludge Solids, X by weight			
5-23	Heat Recovered from Incineration of Sludge Y = -26%.0 + 5.14 X - 0.0002 X ² Primary + W.A.S.	Assumptions: Final stack temp = 500°F		
	Y = -28.6.0 + 5.14 X - 0.0002 X Primary + W.A.S. $Y = -1195.4 + 2.06 X - 0.0006 X^2$ W.A.S. + FeCl ₃	100% Excess air See table preceding Figure 3-111 for sto characteristics in EPA 430/9-77-011		
	Y 620 + 1.71 X Primary Sludge Y - Initial Flue Gas Temperature, OF	Characteristics in Era 430/9-//		
5-74	I - Heat Recovered, million Stu/yr/mgd	Assumptions:		
	Fuel for Studge Incineration Y = 0.44 + 0.0022 X	Solide 307 Exhaust Temp. 1400°F		
	Y - Austilary Fuel, million Stu/ton dry solids	Volatiles 702		

Figure Number From EPA 30/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality		
5-26	Energy Recovery Rotary Kiln Reactor Pyrolysis System	All the state of t		
	Y = 0.02 X Net Energy Output, Stu/lb input X = Z Refuse Z Sludge = 100 - X			
	Y = 0.0 + 0.7150 X ~ 0.0030 X ²	COST (1906) POR POSTORES - 1		
	7 Recovery of Energy Input			
	X = % Refuse % Sludge = 100 - X	APPENDING SECURITION OF SECURITION		
	v - v verme v stode - 100 - V			
5-27	Energy Recovery Vertical Shaft Reactor Pure Oxygen Pyrolysis System	or grant time. C		
	Y = 0.09 + 0.0291 Net Energy Output			
	X = X Refuse			
	$Y = 4.8750 + 0.9737X - 0.0041 x^2$	ar anemaly in rees, and the		
	% Recovery of Energy Input			
5~28	Heat Pump Output Based on Wilton Plant Design Operating Conditions for Various Effluent			
	Temperatures			
	Y = -0.0714 + 1.9257 X - 0.0109 X ² Output, million Btu/yr/mgd			
	Y = 0.1529 + 0.0775 X - 0.0005 X ²			
	Coefficient of Performance			
	X = Wastewater Temperature, ^O F			
5-29	Air to Air Heat Pumps Typical Performance Curve			
	Y ~ 59 - 0.84 X Typical Structure Heat Loss, thousand Btu/hr			
	X = Outside Temperature, OF			
	Y = 11.5091 + 1.2769 X - 0.0054 X ² Heat Pump Capacity			
	Y = 0.8225 + 0.0519 X - 0.0004 X ² Coefficient of Performance			
5-30	Water to Water/Water to Air Heat Pumps Construction Cost			
	$\log Y = 3.026 + 0.1483 (\log X) + 0.1530 (\log X)^2 - 0.0122 (\log X)^3$			
	Y = Construction Cost, dollars			
	X = Heat Pump Capacity, thousand Btu/hr			
5-31	Water to Water/Water to Air Heat Pumps 0 & M Labor Requirements			
	$\log Y = 0.2900 + 0.2924 (\log X) + 0.1916 (\log X)^2$			
	- 0.0253 (log X) ³			
	Y = 0 & M Labor, hr/yr			
	X = Heat Pump Capacity, thousand Btu/hr			
5-32	Water to Water/Water to Air Heat Pumps Maintenance Material Costs			
	$\log Y = 0.4946 + 1.0205 (\log X) - 0.0819 (\log X)^2 + 0.0079 (\log X)^3$	1,4 .		
	Y ~ Maintenance Material, dollars/yr X ~ Heat Pump Capacity, thousand Btu/hr			
5-33	Water to Water/Water to Air Heat Pumps Energy Requirements	Operating Conditions: COP = 2.8		
	Y = 0.95 x1.0 for 8,760 operating hr/yr	Outside Temperature = 50°F		
	Y = 0.49 X ^{1.0} for 4,380 operating hr/yr			
	Y = 0.13 X ^{1.0} for 1,000 operating hr/yr			
	Y = Electricity Required, thousand kwh/yr			
	X = Heat Pump Capacity, thousand Btu/hr			

Figure Number From EPA 430/9-77-011	Operation, Process, and Equation Describing Energy Requirements	Design Conditions, Assumptions and Effluent Quality
5-34	Air to Air Heat Pumpa Construction Cost	
	$\log y = -0.1984 + 0.3145 (\log X) + 0.1484 (\log X)^2$ - 0.0143 (log X) ³	
	Y = Construction Cost, thousand dollars X = Heat Pump Capacity, thousand Btu/hr	
5-35	Air to Air Beat Pumpa O&M Labor Requirements	
	$\log Y = -0.0781 + 0.5929 (\log X) + 0.1290 (\log X)^2$ - 0.0112 (log X) ³	
	Y = 0 & M Labor, hr/yr X = Heat Pump Capacity, thousand Btu/hr	
5-36	Air to Air Heat Pump Maintenance Material Costs	
	$\log Y = 1.0960 + 0.4990 (\log X) + 0.0868 (\log X)^2 - 0.0072 (\log X)^3$	
	Y = Maintenance Material, dollars/yr X = Heat Pump Capacity, thousand Btu/hr	
5-37	Air to Air West Pump Energy Requirements	Operating Conditions:
	Y = 1.18 X 98 for 8,760 operating hr/yr	COP = 2.4 Outside Temperature = 45°F
	Y = 0.53 X1.0 for 4,380 operating hr/yr	
	Y = 0.13 X1.0 for 1,000 operating hr/yr	
	Y - Electricity Required, thousand kwh/yr X - Heat Pump Capacity, thousand Btu/hr	

APPENDIX B

RAW WASTEWATER CHARACTERISTICS (Wesner et al., 1978)

Parameter	Concentration mg/1, Except pH
Biochemical Oxygen Demand	210
Suspended Solids	230
Phosphorus, as P	11
Total Kjeldahl Nitrogen, as N	30
Nitrite plus Nitrate	0
Alkalinity, as CaCO ₂	300
рH	7.3

APPENDIX C
SLUDGE CHARACTERISTICS (Wesner et al., 1978)

Sludge Type	Total Solids (wt Percent of Sludge)	Sludge Solids (1b/mil gal)		Volatile Solids (wt	Sludge Volume (gal/mil
		Total Solids	Volatile Solids	Percent of Total Solids)	gal)
Primary	5	1151	690	60	2,760
Primary + FeCl ₃	2	2510	1176	47	16,500
Primary + Low Lime	5	4979	2243	45	11,940
Primary + High Lime	7.5	9807	4370	45	15,680
Primary + W.A.S.a	2	2096	1446	69	12,565
Primary + (W.A.S. + FeCl ₃)	1.5	2685	1443	54	21,480
(Primary + FeCl ₃) + W.A.S.	1.8	3144	1676	53	20,960
W.A.S.	1.0	945	756	80	11,330
W.A.S. + FeCl	1.0	1535	776	50	18,400
Digested Primary	8.0	806	345	43	1,210
Digested Primary + W.A.S.	4.0	1226	576	47	3,680
Digested Primary + W.A.S. + FeCl ₃	4.0	1817	599	33	5,455
Tertiary Alum	1.0	700	242	35	8,390
Tertiary High Lime	4.5	8139	32 19	40	21,690
Tertiary Low Lime	3.0	3311	1301	39	13,235

^aW.A.S. = Wasted activated sludge.

LITERATURE CITED

- Benjes, H. H. (1978) Small community wastewater treatment facilities-biological treatment systems. USEPA, Technology Transfer, Design Seminar Handout, Cincinnati, Ohio.
- Culp, G. L. (1978) Alternatives for wastewater treatment at South Tahoe, CA. Paper presented at the 51st Annual Conference of the Water Pollution Control Federation, Anaheim, CA, October 1978.
- Culp, R. L., and G. L. Culp (1971) Advanced wastewater treatment.

 Van Nostrand Reinhold Company, New York, N.Y.
- Environmental Protection Agency (1978) Attachment E to USEPA Program Requirements Memorandum #PRM 79-3 issued 15 November 1978, to provide guidance on land treatment alternatives.
- Garber, W. F., G. T. Ohara, and S. K. Raksit (1975) Energy-wastewater treatment and solids disposal. <u>Journal of the Environmental</u> Engineering Division, ASCE, EE3, p. 319-331.
- Hagan, R. A., and E. B. Roberts (1976) Energy requirements for wastewater treatment. Part 2. Water & Sewage Works, Vol. 123, No. 12, p. 52-57.
- Jacobs, A. (1977) Reduction and recovery: Keys to energy selfsufficiency. Water & Sewage Works, Reference Number R-24 - R-37.
- Mills, R. A., and G. Tchobanoglous (1974) Energy consumption in wastewater treatment. In: Energy, Agriculture and Waste Management, W. J. Jewell, Editor. Ann Arbor, Michigan: Ann Arbor Science Publishers, Inc.
- Smith, Robert (1973) Electrical power consumption for wastewater treatment, U.S. Environmental Protection Agency, Cincinnati, Ohio, EPA R2-73-281.
- Tchobanoglous, G. (1974) Wastewater treatment for small communities.

 Parts 1 and 2. Public Works, Vol. 105, No. 7 & 8, p. 61-68 & 58-62.
- Wesner, G. M., L. J. Ewing, Jr., T. S. Lineck, and D. J. Hinrichs (1978) Energy conservation in municipal wastewater treatment. MCD-32. EPA 430/9-77-011. Prepared for the U.S. Environmental Protection Agency, Office of Water Program Operations, Washington, D.C.
- Wesner, G. M., and B. E. Burris (1978) Energy comparisons in wastewater treatment. Paper presented at the 51st Annual Conference of the Water Pollution Control Federation, Anaheim, California, 5 October 1978.

- Wesner, G. M., and W. N. Clarke (1978) There is a lot of energy in digester gas. Bulletin of the California Water Pollution Control Association, p. 70-79, July 1978.
- Zarnett, G. D. (1976) Energy requirements for wastewater treatment equipment. Applied Science Section, Pollution Control Branch, Ministry of the Environment, Ontario, Canada, TN 7008.
- Zarnett, G. D. (Undated) Energy requirements for conventional and advanced wastewater treatment. Applied Sciences Section, Pollution Control Branch, Ministry of the Environment, Ontario, Canada, Publication No. W47.
- Zarnett, G. D. (1977) Energy requirements for water treatment systems.

 Applied Sciences Section, Pollution Control Branch, Ministry of the Environment, Toronto, Ontario, Canada, Research Paper No. S2043.

minto international complete solution and the second